Câu hỏi:

11/03/2023 106,780

Có bao nhiêu giá trị nguyên của tham số m để hàm số y=x4+6x2+mx có ba điểm cực trị?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Ta có: y'=4x3+12x+m. Xét phương trình y'=04x3+12x+m=0      1.

Để hàm số có ba điểm cực trị thì phương trình (1) phải có 3 nghiệm phân biệt.

Ta có: 1m=4x312x.

Xét hàm số gx=4x312x có g'x=12x212. Cho g'x=012x212=0x=±1.

Bảng biến thiên của gx

Có bao nhiêu giá trị nguyên của tham số m  để hàm số y= -x^4+6x^2+mx  có ba điểm cực trị? (ảnh 1)


Dựa vào bảng biến thiên ta thấy, phương trình (1) có 3 nghiệm phân biệt khi 8<m<8.

Do mm7,6,5,...,5,6,7.

Vậy có 15 giá trị nguyên của tham số m thỏa yêu cầu đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Ta có: Gx=Fx+C

F(4)+G(4)=4F(0)+G(0)=12F(4)+C=42F(0)+C=1F(4)F(0)=32.

Vậy: 02f(2x)dx=04f(x)dx=F(4)F(0)=32.

Lời giải

Chọn D

Ta có vectơ pháp tuyến của Oxy và Oyz lần lượt là k và i.

ki nên Oxy;Oyz^=90°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP