Câu hỏi:

19/08/2025 284 Lưu

b) Kẻ AH vuông góc với BE. Gọi M, N theo thứ tự là trung điểm của AH và HE. Chứng minh tứ giác BMNC là hình bình hành.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

b) Theo đề ta có: MA = MH , NH = NE

MN là đường trung bình của ∆AHE

MN //AE và MN=12AE (1)

Ta có: AD = DE (gt) nên AD=12AE

Vì ABCD là hình vuông nên AD = BC và AD vuông góc với AB;

nên BC=12AE và DE // BC (2)

Từ (1) và (2) MN = BC và MN//BC

Tứ giác BMNC là hình bình hành .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Sai số tỉ đối của phép đo đó là:ε=2118.100%=1,67% .

Đáp án đúng là B.

Lời giải

Ta có p=AB+BC+CA2=6+3+12  .

Theo công thức Heron, ta có:

SABC=ppABpBCpAC=3+32.

Bán kính đường tròn ngoại tiếp là:

R=AB.BC.CA4S=2.

Câu 3

A. 2sinA=1sinB+1sinC ;
B. 2sin A = sin B + sin C;
C. sin A = 2sin B + 2sin C;
D. 2sinA=1sinB1sinC  .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 4x – y – 3 = 0; 2x – 3y + 1 = 0;
B. 4x – y – 3 = 0; 2x + 3y + 1 = 0
C. 4x + y – 3 = 0; 2x – 3y + 1 = 0;
D. x – y = 0; 2x – 3y + 1 = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP