Câu hỏi:

17/04/2023 244

b) Kẻ AH vuông góc với BE. Gọi M, N theo thứ tự là trung điểm của AH và HE. Chứng minh tứ giác BMNC là hình bình hành.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Theo đề ta có: MA = MH , NH = NE

MN là đường trung bình của ∆AHE

MN //AE và MN=12AE (1)

Ta có: AD = DE (gt) nên AD=12AE

Vì ABCD là hình vuông nên AD = BC và AD vuông góc với AB;

nên BC=12AE và DE // BC (2)

Từ (1) và (2) MN = BC và MN//BC

Tứ giác BMNC là hình bình hành .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Sai số tỉ đối của phép đo đó là:ε=2118.100%=1,67% .

Đáp án đúng là B.

Câu 2

Lời giải

2ha= hb ​+ hc​ 

4.SABCa=2.SABCb+2.SABCc

2a=1b+1c

Áp dụng định lí sin ta có:

1sinB+1sinC=2Rb+2Rc=2R1b+1c=2R.2a=2sinA

Vậy 1sinB+1sinC=2sinA

Vậy nếu có 2ha= hb ​+ hc​ thì: 2sinA=1sinB+1sinC

Vậy ta chọn đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP