Câu hỏi:

13/07/2024 1,940

Cho hình chữ nhật ABCD đường chéo AC và BD cắt nhau tại O. Lấy P là điểm tùy ý trên OB. Gọi M là điểm đối xứng với C qua P. Từ M kẻ ME vuông góc với đường thẳng AB (F AB).

a) Chứng minh AEFM là hình chữ nhật.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chữ nhật ABCD đường chéo AC và BD cắt nhau tại O. Lấy P là điểm tùy ý trên OB. Gọi M là điểm đối xứng với C qua P. Từ M kẻ ME vuông góc  (ảnh 1)

a) Ta có:EAF^=90o  (ABCD là hình vuông);  MEA^=90o(ME vuông góc AD tại E);  EMF^=90o (MF vuông góc AB tại F).

Tứ giác AEMF có 3 góc vuông nên AEMF là hình chữ nhật.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Sai số tỉ đối của phép đo đó là:ε=2118.100%=1,67% .

Đáp án đúng là B.

Câu 2

Lời giải

2ha= hb ​+ hc​ 

4.SABCa=2.SABCb+2.SABCc

2a=1b+1c

Áp dụng định lí sin ta có:

1sinB+1sinC=2Rb+2Rc=2R1b+1c=2R.2a=2sinA

Vậy 1sinB+1sinC=2sinA

Vậy nếu có 2ha= hb ​+ hc​ thì: 2sinA=1sinB+1sinC

Vậy ta chọn đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP