Câu hỏi:

17/04/2023 514

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A (2; 4), B (5; 1), C(– 1; – 2). Phép tịnh tiến theo véc tơ BC  biến tam giác ABC thành tam giác A'B'C'. Tìm tọa độ trọng tâm của tam giác A'B'C'.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tọa độ vectơ = (–1 – 5; – 2 – 1) = ( – 6; – 3);

Gọi G (x1; y1) là trọng tâm tam giác ABC.

x1=2+513y1=4+123x1=2y1=1

Tọa độ trong tâm tam giác ABC là G (2; 1).

Gọi G (x2; y2) là trọng tâm tam giác A'B'C'.

Phép tịnh tiến theo véc tơ  biến tam giác ABC thành tam giác A'B'C' nên G(2; 1) cũng tịnh tiến theo véc tơ  thành G’ (x2; y2).

Ta có:  = = ( – 6; – 3)

x22=6y21=3x2=4y2=2.

Vậy G’ (– 4; – 2).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Sai số tỉ đối của phép đo đó là:ε=2118.100%=1,67% .

Đáp án đúng là B.

Câu 2

Lời giải

2ha= hb ​+ hc​ 

4.SABCa=2.SABCb+2.SABCc

2a=1b+1c

Áp dụng định lí sin ta có:

1sinB+1sinC=2Rb+2Rc=2R1b+1c=2R.2a=2sinA

Vậy 1sinB+1sinC=2sinA

Vậy nếu có 2ha= hb ​+ hc​ thì: 2sinA=1sinB+1sinC

Vậy ta chọn đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP