Câu hỏi:

13/07/2024 2,368

Chứng minh rằng: a4 + b4 + c4 ≥ abc(a + b + c).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Áp dụng bất đẳng thức:

a2 + b2 + c2 ≥ ab + ac + bc

a4 + b4 + c4 ≥ a2b2 + a2c2 + b2c2

Mà: a2b2 + a2c2 + b2c2 ≥ a2bc + ab2c + abc2

Mặc khác: a2bc + ab2c + abc2 = abc(a + b + c).

Vậy: a4 + b4 + c4 ≥ abc(a + b + c).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Sai số tỉ đối của phép đo đó là:ε=2118.100%=1,67% .

Đáp án đúng là B.

Câu 2

Lời giải

2ha= hb ​+ hc​ 

4.SABCa=2.SABCb+2.SABCc

2a=1b+1c

Áp dụng định lí sin ta có:

1sinB+1sinC=2Rb+2Rc=2R1b+1c=2R.2a=2sinA

Vậy 1sinB+1sinC=2sinA

Vậy nếu có 2ha= hb ​+ hc​ thì: 2sinA=1sinB+1sinC

Vậy ta chọn đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP