Câu hỏi:
20/04/2023 271Phương pháp làm mịn dần là một trong các cách tiếp cận tổng quát khi giải quyết các bài toán cụ thể. Em có thể sử dụng sơ đồ hình cây để mô tả phương pháp này không?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp làm mịn dần, hay còn gọi là phương pháp giảm dần và chinh phục dần là một trong các cách tiếp cận tổng quát để giải quyết các bài toán cụ thể. Sơ đồ hình cây là một công cụ hữu ích để mô tả phương pháp này.
Sơ đồ hình cây là một biểu đồ hình cây đơn giản, thường được sử dụng để minh họa quá trình giải quyết bài toán bằng phương pháp làm mịn dần. Nó gồm các nút đại diện cho các bài toán con, và các nhánh đại diện cho các bước giải quyết bài toán con đó. Các nhánh này có thể tiếp tục được chia nhỏ cho đến khi không thể chia nhỏ hơn nữa (đạt được điều kiện dừng), sau đó các kết quả của các bài toán con được tổng hợp lại để đưa ra kết quả cuối cùng cho bài toán gốc.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Xâu kí tự được gọi là đối xứng nêu thay đổi thứ tự ngược lại các kí tự của xâu thì vẫn nhận được dãy ban đầu. Ví dụ xâu “abcdcba" là đối xứng, còn xâu “1011” không là đối xứng. Thiết kế và viết chương trình kiểm tra một xâu kí tự cho trước có là đối xứng hay không. Yêu cầu đưa ra quy trình thiết kế theo phương pháp làm mịn dần.
Câu 2:
Cho dãy số A = A[0], A[1]. .... A[n — 1]. Thiết kế và viết chương trình kiểm tra trong dãy A có hai phân tử nào trùng nhau hay không. Cần đưa ra câu trả lời là “có” hay “không”. Yêu cầu đưa ra quy trình thiết kế theo phương pháp làm mịn dần.
Câu 3:
Thiết kế thuật toán cho nhiệm vụ 1 với ý tưởng khác như sau: Dãy A là một hoán vị của dãy các số từ 1 đến n khi và chỉ khi dãy A có độ dài n và mọi số i từ 1 đến n đều nằm trong A.
Câu 4:
Trong Nhiệm vụ 2, nếu dãy A đã được sắp xếp theo thứ tự tăng dần thì có thể cải tiến thuật toán tốt hơn được không?
về câu hỏi!