Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Quảng cáo
Trả lời:

\(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\)
\(\begin{array}{l} \Leftrightarrow \cos \left( {\frac{\pi }{6} - 2x} \right) = \cos \left( {\frac{\pi }{2} - x} \right)\\ \Leftrightarrow \frac{\pi }{6} - 2x = \pm \left( {\frac{\pi }{2} - x} \right) + k2\pi \,\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)
\( \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{3} + k2\pi \\3x = \frac{{2\pi }}{3} + k\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{3} + k2\pi \,\,\,\,\,\left( 1 \right)\\x = \frac{{2\pi }}{9} + 2k\frac{\pi }{3}\,\,\,\,\left( 2 \right)\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
Do \(x \in \left( {\frac{\pi }{2};2\pi } \right)\)
Nên (1) \( \Leftrightarrow \frac{1}{2} < - \frac{1}{3} + 2k < 2 \Leftrightarrow \frac{5}{{12}} < k < \frac{7}{6} \Rightarrow k = \left\{ 1 \right\}\), do k nguyên.
(2) \[ \Leftrightarrow \frac{1}{2} < \frac{2}{9} + \frac{{2k}}{3} < 2 \Leftrightarrow \frac{1}{2} < \frac{2}{3} + 2k < 6\]
\( \Leftrightarrow \frac{1}{6} < k < \frac{8}{3} \Rightarrow k \in \left\{ {1;2} \right\}\), do k nguyên.
Vậy có 3 nghiệm thỏa mãn yêu cầu.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Áp dụng định lí hàm số côsin cho ∆ABC ta có: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.cos60^\circ = \sqrt 7 \)
Gọi AH là đường phân giác góc A.
Áp dụng tính chất đường phân giác cho ∆ABC: \(\frac{{AB}}{{AC}} = \frac{{BH}}{{HC}}\)
\(\frac{{AB}}{{BH}} = \frac{{AC}}{{HC}} = \frac{{AB + AC}}{{BH + HC}} = \frac{{2 + 3}}{{BC}} = \frac{5}{{\sqrt 7 }}\)
\( \Rightarrow BH = AB:\frac{5}{{\sqrt 7 }} = \frac{{2\sqrt 7 }}{5}\)
\(\cos \widehat B = \frac{{A{C^2} - A{B^2} - B{C^2}}}{{ - 2AB.BC}} = \frac{{\sqrt 7 }}{{14}}\)
Xét ∆ABH có: \(A{H^2} = A{B^2} + B{H^2} - 2.AB.BH.cos\widehat B = \frac{{108}}{{25}} \Rightarrow AH = \frac{{6\sqrt 3 }}{5}\).
Lời giải
\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}}\)
\(\frac{{\sin A}}{{\sin B}} = \frac{a}{b} = \frac{5}{4}\), b = 8
\(\frac{a}{{\sin A}} = \frac{c}{{\sin C}}\)
\(\frac{{\sin A}}{{\sin C}} = \frac{a}{c} = \frac{5}{3}\), c = 6
Chu vi là: 8 + 6 + 10 = 24.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.