Câu hỏi:

13/07/2024 13,126 Lưu

Cho hình bình hành ABCD. E, F lần lượt là trung điểm của AB và CD.

a. Tứ giác DEBF là hình gì? Vì sao?

b. Chứng minh 3 đường thẳng AC, BD, EF đồng quy.

c. Gọi giao điểm của AC với DE và BF theo thứ tự là M, N. Chứng minh tứ giác EMFN là hình bình hành.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình bình hành ABCD. E, F lần lượt là trung điểm của AB và CD. a. Tứ giác (ảnh 1)

a. Vì ABCD là hình bình hành

\(\left. {\begin{array}{*{20}{c}}{AB = DC}\\{BE = \frac{1}{2}AB}\\{DF = \frac{1}{2}DC}\end{array}} \right\} \Rightarrow EB = DF\)

Mà EB // DF DEBF là hình bình hành

b. ABCD là hình bình hành nên AC và BD cắt nhau tại trung điểm của mỗi đường.

DEBF là hình bình hành nên EF và BD cắt nhau tại trung điểm của mỗi đường

AC, BD, EF đồng quy

c. Ta có: ME // FN (Vì DE // BF) (1)

Xét ∆MDC có: \(\left. {\begin{array}{*{20}{c}}{EN = DM}\\{CF = DF}\end{array}} \right\} \Rightarrow MN = NC\)

Xét ∆ABN có: \(\left. {\begin{array}{*{20}{c}}{AE = BE}\\{ME//BN}\end{array}} \right\} \Rightarrow MN = AM\)

Xét ∆AME và ∆CNF có: AM = NC, AE = CF, \(\widehat {MAE} = \widehat {NCF}(AB//DC)\)

∆AME = ∆CNF (c.g.c) ME = NF (2)

Từ (1), (2) MENF là hình bình hành.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có AB = 2, AC = 3, góc A = 60 độ. Tính độ dài phân giác góc A (ảnh 1)

Áp dụng định lí hàm số côsin cho ∆ABC ta có: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.cos60^\circ  = \sqrt 7 \)

Gọi AH là đường phân giác góc A.

Áp dụng tính chất đường phân giác cho ∆ABC: \(\frac{{AB}}{{AC}} = \frac{{BH}}{{HC}}\)

\(\frac{{AB}}{{BH}} = \frac{{AC}}{{HC}} = \frac{{AB + AC}}{{BH + HC}} = \frac{{2 + 3}}{{BC}} = \frac{5}{{\sqrt 7 }}\)

\( \Rightarrow BH = AB:\frac{5}{{\sqrt 7 }} = \frac{{2\sqrt 7 }}{5}\)

\(\cos \widehat B = \frac{{A{C^2} - A{B^2} - B{C^2}}}{{ - 2AB.BC}} = \frac{{\sqrt 7 }}{{14}}\)

Xét ∆ABH có: \(A{H^2} = A{B^2} + B{H^2} - 2.AB.BH.cos\widehat B = \frac{{108}}{{25}} \Rightarrow AH = \frac{{6\sqrt 3 }}{5}\).

Lời giải

Ta có: 0 < x < \(\frac{\pi }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}{\sin x > 0}\\{\cos x > 0}\end{array}} \right.\)

+) \({\cos ^2}x + {\sin ^2}x = 1 \Leftrightarrow {\frac{2}{{\sqrt 5 }}^2} + {\sin ^2}x = 1\)

\( \Leftrightarrow {\sin ^2}x = \frac{1}{5} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin x = \frac{1}{{\sqrt 5 }}\left( {TM} \right)}\\{\sin x = - \frac{1}{{\sqrt 5 }}\left( L \right)}\end{array}} \right.\)

\( + )1 + {\cos ^2}x = \frac{1}{{{{\cos }^2}x}} \Leftrightarrow 1 + {\cos ^2}x = \frac{1}{{{{\left( {\frac{2}{{\sqrt 5 }}} \right)}^2}}}\)

\( \Leftrightarrow {\tan ^2}x = \frac{1}{4} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\tan x = \frac{1}{2}(TM)}\\{{\mathop{\rm t}\nolimits} = - \frac{1}{2}(L)}\end{array}} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP