Câu hỏi:

11/05/2023 625

1. Hãy trình bày cách giải bài toán tìm bi giả với 5 viên bi.

2. Trường hợp tổng quát có n viên bi cách làm như thế nào?

3. Ý tưởng chia để trị để giải bài toán tìm bi giả được thể hiện như thế nào?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1. Cách giải bài toán tìm bi giả với 5 viên bi.

Với 5 viên bi, lần cân đầu tiên chúng ta lấy 4 viên bi, đặt 2 viên bi ở hai bên cân.

Trường họp 1. Nếu cân thăng bằng thì xác định được viên bi còn lại chưa cân là bi giả.

Như vậy, sau lần cần thứ nhất ta tìm được bi giả.

Trường hợp 2. Nếu cân bị lệch, ta sẽ xác định bên nặng hơn chứa bi giả. Lấy hai viên bi ở bên nặng hơn và cân mỗi bên một viên, ta sẽ xác định được viên bi giả. Như vậy, sau lần cân thứ hai ta tìm được bi giả.

2. Trường hợp tổng quát có n viên bi cách làm như sau:

- Nếu n lẻ, n = 2k + 1, sau lần cân thứ nhất với mỗi bên k viên, hoặc tìm thấy ngay viên bi giả, hoặc biết bên nào có chứa bi giả và tiếp tục cân với k viên bi đó.
- Nếu n chẵn, n = 2k, sau lần cân thứ nhất, ta tìm được k viên bi chữa viên bi giả. Tổng quát, sau một lần cân, từ bài toán với n viên bi sẽ dẫn đến bài toán với [n/21 viên bi ([x] là phần nguyên của x). Khi bài toán dẫn đến còn hai hoặc ba viên bi thì chỉ cần một lần cân nữa sẽ tìm được viên bi giả.

3. Ý tưởng chia để trị để giải bài toán tìm bi giả được thể hiện như thế nào?

        Ý tưởng chia để trị để giải bài toán tìm bi giả: Từ bài toán gốc luôn chia thành các bài toán có kích thước nhỏ hơn, ở đây là [n/2]. Khi số bi còn lại là 2 thì bài toán rất đơn giản có thể giải quyết ngay, đó là trị. Sau khi trị xong, kết hợp lại cả quá trình để tổng hợp kết quả chung sẽ giải quyết được bài toán gốc.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Khi left = right, nghĩa là chỉ còn một phần tử để xét. Ta so sánh giá trị của phần tử đó với giá trị cần tìm x.

Nếu phần tử đó bằng x thì ta trả về vị trí của phần tử đó (left hoặc right).

Nếu phần tử đó khác x thì ta trả về giá trị -1 để thể hiện không tìm thấy phần tử x trong dãy.

Lời giải

Thuật toán tìm số nguyên lớn nhất không vượt quá căn bậc hai của n có thể được thiết kế bằng kĩ thuật chia để trị theo các bước sau:

1. Nếu n bằng 0 hoặc 1, trả về n.

2. Đặt a bằng căn bậc hai của n.

3. Nếu a bằng n, trả về a.

4. Ngược lại, tìm số nguyên lớn nhất không vượt quá căn bậc hai của n/2 và số nguyên lớn nhất không vượt quá căn bậc hai của n - 1. So sánh hai số này và trả về số lớn hơn.

Để tính giá trị (số nguyên) gần đúng căn bậc hai của số tự nhiên n cho trước, người (ảnh 2)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay