Câu hỏi:
13/07/2024 12,138Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) ∆BCF nội tiếp đường tròn tâm O, đường kính BC.
Suy ra \(\widehat {BFC}\) là góc nội tiếp chắn nửa đường tròn đường kính BC.
Khi đó \(\widehat {BFC} = 90^\circ \) hay \(\widehat {AFH} = 90^\circ \).
Vì vậy ba điểm A, F, H cùng thuộc đường tròn đường kính AH (1)
Chứng minh tương tự, ta được \(\widehat {AEH} = 90^\circ \).
Suy ra ba điểm A, E, H cùng thuộc đường tròn đường kính AH (2)
Từ (1), (2), ta được tứ giác AEHF nội tiếp đường tròn đường kính AH.
b) Ta có \(\widehat {FIE} = 2\widehat {FAE} = 2.60^\circ = 120^\circ \) (góc nội tiếp bằng một nửa số đo của của bị chắn).
Suy ra .
Ta có I là tâm đường tròn ngoại tiếp tứ giác AEHF (giả thiết).
Suy ra I là trung điểm AH.
Do đó \(IA = IH = \frac{{AH}}{2} = \frac{4}{2} = 2\,\,\left( {cm} \right)\).
Diện tích hình quạt IEHF của đường tròn (I) là:
\(S = \frac{{\pi .I{A^2}.n^\circ }}{{360^\circ }} = \frac{{\pi {{.2}^2}.120^\circ }}{{360^\circ }} = \frac{{4\pi }}{3}\,\,\,\left( {c{m^2}} \right)\).
Vậy sđ và diện tích hình quạt IEHF của đường tròn (I) bằng \(\frac{{4\pi }}{3}\,\,c{m^2}\).
c) ∆ABC có hai đường cao CF và BE cắt nhau tại H.
Suy ra H là trực tâm của ∆ABC.
Mà AH cắt BC tại D.
Do đó AD ⊥ BC.
Suy ra \(\widehat {HDB} = 90^\circ \).
Khi đó ba điểm B, D, H cùng thuộc đường tròn đường kính BH (3)
Lại có \(\widehat {BFH} = 90^\circ \) (chứng minh trên).
Suy ra ba điểm B, F, H cùng thuộc đường tròn đường kính BH (4)
Từ (3), (4), suy ra tứ giác BDHF nội tiếp đường tròn đường kính BH.
Do đó \(\widehat {HFD} = \widehat {HBD}\) (cùng chắn ) (*)
Ta có tứ giác AEHF nội tiếp đường tròn đường kính AH (chứng minh trên).
Suy ra \(\widehat {EFH} = \widehat {EAH}\) (cùng chắn ) (**)
Ta có \(\widehat {EBC} = \widehat {CAD}\) (cùng phụ với \(\widehat {ACB}\)) (***)
Từ (*), (**), (***), suy ra \(\widehat {HFD} = \widehat {EFH}\).
Vậy FH là tia phân giác của \(\widehat {DFE}\).
d) Ta có tứ giác AEHF nội tiếp đường tròn đường kính AH (chứng minh trên).
Suy ra IE = IH.
Do đó ∆IEH cân tại I.
Vì vậy \(\widehat {IEH} = \widehat {IHE}\) (5)
Lại có \(\widehat {BHD} = \widehat {IHE}\) (cặp góc đối đỉnh) (6)
Mà \(\widehat {BHD} = \widehat {ECO}\) (cùng phụ với \(\widehat {ABC}\)) (7)
Ta có tứ giác BCEF nội tiếp đường tròn tâm O, đường kính BC (giả thiết).
Suy ra OE = OC.
Do đó ∆OEC cân tại O.
Vì vậy \(\widehat {ECO} = \widehat {OEC}\) (8)
Từ (5), (6), (7), (8), suy ra \(\widehat {IEH} = \widehat {OEC}\).
Mà \(\widehat {OEH} + \widehat {OEC} = 90^\circ \) (do BE ⊥ AC).
Suy ra \(\widehat {OEH} + \widehat {IEH} = 90^\circ \).
Do đó \(\widehat {IEO} = 90^\circ \).
Vì vậy OE ⊥ EI.
Suy ra IE là tiếp tuyến của (O).
Chứng minh tương tự, ta được IF là tiếp tuyến của (O).
Mà I ∈ AH.
Vậy 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại điểm I.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 1,5k
Đã bán 1,1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).
Câu 5:
Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).
d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).
Câu 6:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận