Câu hỏi:

13/07/2024 3,708

Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.

a) Chứng minh tứ giác AEHF nội tiếp.

b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.

c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).

d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) ∆BCF nội tiếp đường tròn tâm O, đường kính BC.

Suy ra \(\widehat {BFC}\) là góc nội tiếp chắn nửa đường tròn đường kính BC.

Khi đó \(\widehat {BFC} = 90^\circ \) hay \(\widehat {AFH} = 90^\circ \).

Vì vậy ba điểm A, F, H cùng thuộc đường tròn đường kính AH (1)

Chứng minh tương tự, ta được \(\widehat {AEH} = 90^\circ \).

Suy ra ba điểm A, E, H cùng thuộc đường tròn đường kính AH (2)

Từ (1), (2), ta được tứ giác AEHF nội tiếp đường tròn đường kính AH.

b) Ta có \(\widehat {FIE} = 2\widehat {FAE} = 2.60^\circ = 120^\circ \) (góc nội tiếp bằng một nửa số đo của của bị chắn).

Suy ra .

Ta có I là tâm đường tròn ngoại tiếp tứ giác AEHF (giả thiết).

Suy ra I là trung điểm AH.

Do đó \(IA = IH = \frac{{AH}}{2} = \frac{4}{2} = 2\,\,\left( {cm} \right)\).

Diện tích hình quạt IEHF của đường tròn (I) là:

\(S = \frac{{\pi .I{A^2}.n^\circ }}{{360^\circ }} = \frac{{\pi {{.2}^2}.120^\circ }}{{360^\circ }} = \frac{{4\pi }}{3}\,\,\,\left( {c{m^2}} \right)\).

Vậy sđ và diện tích hình quạt IEHF của đường tròn (I) bằng \(\frac{{4\pi }}{3}\,\,c{m^2}\).

c) ∆ABC có hai đường cao CF và BE cắt nhau tại H.

Suy ra H là trực tâm của ∆ABC.

Mà AH cắt BC tại D.

Do đó AD BC.

Suy ra \(\widehat {HDB} = 90^\circ \).

Khi đó ba điểm B, D, H cùng thuộc đường tròn đường kính BH (3)

Lại có \(\widehat {BFH} = 90^\circ \) (chứng minh trên).

Suy ra ba điểm B, F, H cùng thuộc đường tròn đường kính BH   (4)

Từ (3), (4), suy ra tứ giác BDHF nội tiếp đường tròn đường kính BH.

Do đó \(\widehat {HFD} = \widehat {HBD}\) (cùng chắn )   (*)

Ta có tứ giác AEHF nội tiếp đường tròn đường kính AH (chứng minh trên).

Suy ra \(\widehat {EFH} = \widehat {EAH}\) (cùng chắn )   (**)

Ta có \(\widehat {EBC} = \widehat {CAD}\) (cùng phụ với \(\widehat {ACB}\))    (***)

Từ (*), (**), (***), suy ra \(\widehat {HFD} = \widehat {EFH}\).

Vậy FH là tia phân giác của \(\widehat {DFE}\).

d) Ta có tứ giác AEHF nội tiếp đường tròn đường kính AH (chứng minh trên).

Suy ra IE = IH.

Do đó ∆IEH cân tại I.

Vì vậy \(\widehat {IEH} = \widehat {IHE}\)    (5)

Lại có \(\widehat {BHD} = \widehat {IHE}\) (cặp góc đối đỉnh)    (6)

\(\widehat {BHD} = \widehat {ECO}\) (cùng phụ với \(\widehat {ABC}\))    (7)

Ta có tứ giác BCEF nội tiếp đường tròn tâm O, đường kính BC (giả thiết).

Suy ra OE = OC.

Do đó ∆OEC cân tại O.

Vì vậy \(\widehat {ECO} = \widehat {OEC}\)   (8)

Từ (5), (6), (7), (8), suy ra \(\widehat {IEH} = \widehat {OEC}\).

\(\widehat {OEH} + \widehat {OEC} = 90^\circ \) (do BE AC).

Suy ra \(\widehat {OEH} + \widehat {IEH} = 90^\circ \).

Do đó \(\widehat {IEO} = 90^\circ \).

Vì vậy OE EI.

Suy ra IE là tiếp tuyến của (O).

Chứng minh tương tự, ta được IF là tiếp tuyến của (O).

Mà I AH.

Vậy 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại điểm I.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai tập hợp X = (0; 3] và Y = (a; 4). Tìm tất cả các giá trị của a ≤ 4 để X ∩ Y ≠ .

Xem đáp án » 17/05/2023 14,819

Câu 2:

Tìm m để đường thẳng y = 2x – 1 và y = 3x + m cắt nhau tại một điểm nằm trên trục hoành.

Xem đáp án » 13/07/2024 6,555

Câu 3:

Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:

a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).

b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).

c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).

Xem đáp án » 13/07/2024 6,178

Câu 4:

Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:

a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).

b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).

c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).

d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).

Xem đáp án » 11/07/2024 4,483

Câu 5:

Cho tam giác ABC, hai điểm M, N được xác định bởi \(3\overrightarrow {MA} + 4\overrightarrow {MB} = \vec 0\); \(\overrightarrow {NB} - 3\overrightarrow {NC} = \vec 0\). Chứng minh 3 điểm M, G, N thẳng hàng, với G là trọng tâm tam giác ABC.

Xem đáp án » 12/07/2024 3,604

Câu 6:

Tìm nghiệm nguyên của phương trình: 7(x2 + xy + y2) = 39(x + y).

Xem đáp án » 13/07/2024 3,299

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store