Câu hỏi:

06/06/2023 229

Cho một nửa đường tròn đường kính AB. Điểm M chạy trên nửa đường tròn. Kẻ MH vuông góc với AB tại H. Đặt MH = x. Chứng minh rằng:

Cho một nửa đường tròn đường kính AB. Điểm M chạy trên nửa đường tròn. Kẻ MH vuông góc  (ảnh 1)

.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho một nửa đường tròn đường kính AB. Điểm M chạy trên nửa đường tròn. Kẻ MH vuông góc  (ảnh 2)

Ta có: AMB nội tiếp trong đường tròn có AB là đường kính nên \(\widehat {AMB} = 90^\circ \)

Suy ra: \(\widehat {MAB} + \widehat {MBA} = 90^\circ \)     (1)

AMH vuông tại H nên:

\(\widehat {MAH} + \widehat {HMA} = 90^\circ \)

Hay \(\widehat {MAB} + \widehat {HMA} = 90^\circ \)                   (2)

Từ (1) và (2) suy ra: \(\widehat {MBA} = \widehat {HMA}\)

Xét AHM và MHB có:

\(\widehat {AHM} = \widehat {MHB} = 90^\circ \)

\(\widehat {MBH} = \widehat {HMA}\) (cmt)

Suy ra: (g.g)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số học sinh giỏi, khá, trung bình lần lượt là: a, b, c (học sinh. a, b, c ℕ*)

Theo bài cho ta có:

\(\frac{a}{2} = \frac{b}{3} = \frac{c}{5}\) và b + c – a = 180.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

 \(\frac{a}{2} = \frac{b}{3} = \frac{c}{5} = \frac{{b + c - a}}{{3 + 5 - 2}} = \frac{{180}}{6} = 30\)

Suy ra:

a = 2.30 = 60 (thỏa mãn điều kiện)

b = 3.30 = 90 (thỏa mãn điều kiện)

c = 5.30 = 150 (thỏa mãn điều kiện)

Vậy số học sinh giỏi, khá, trung bình khối 7 lần lượt là: 60 em; 90 em; 150 em.

Lời giải

Số công nhân sau khi được tăng thêm là:

12 + 8 = 20 (công nhân)

Gọi thời gian 20 công nhân hoàn thành xong công việc là a.

Vì thời gian và số công nhân tỉ lệ nghịch với nhau nên:

5.12 = x.20

\[x = \frac{{5.12}}{{20}} = 3\]

Thời gian hoàn thành công việc được giảm:

5 – 3 = 2 (giờ)

Đáp số: 2 giờ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay