Câu hỏi:
11/07/2024 309Một lớp có 60 học sinh, trong đó có 36 học sinh giỏi toán, 21 học sinh giỏi văn, 25 học sinh giỏi anh, 10 học sinh vừa giỏi toán vừa giỏi văn, 15 học sinh vừa giỏi toán vừa giỏi anh, 4 học sinh vừa giỏi văn vừa giỏi anh, 5 học sinh giỏi cả 3 môn. Hỏi trong lớp có mấy học sinh chỉ giỏi 1 môn, mấy học sinh không giỏi môn nào trong 3 môn trên?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Số học sinh học giỏi chỉ giỏi môn Toán là:
36 – 10 – 5 – 5 = 16 (học sinh)
Số học sinh học giỏi chỉ giỏi môn Anh là:
25 – 5 – 10 + 1 = 11 (học sinh)
số học sinh học giỏi chỉ giỏi môn Văn là:
21 – 5 – 5 + 1 = 12 (học sinh)
Lớp đó có số học sinh không giỏi môn nào trong 3 môn trên là :
60 – ( 6 + 11 + 12 + 10 + 5 + 5 – 1) = 2 (học sinh).
Vậy lớp đó có số học sinh không giỏi môn nào trong 3 môn trên là 2 học sinh.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm m để 2 đường thẳng (d) cắt nhau tại 1 điểm trên trục tung cho hàm số y = (m + 2)x + 2m2 + 1 tìm m để hai đường thẳng (d): y = (m + 2)x + 2m2 + 1 và (d'): y = 3x + 3 cắt nhau tại 1 điểm trên trục tung.
Câu 2:
Có tất cả 18 quả táo, cam và xoài. Số quả cam bằng \(\frac{1}{2}\) số quả táo. Số quả xoài gấp 3 lần số quả cam. Tính số quả táo.
Câu 4:
Tìm x, biết: \[\frac{1}{4}{x^2} - \left( {\frac{1}{2}x - 4} \right)\frac{1}{2}x = - 14\].
Câu 5:
Cho hình vuông ABCD. Trên tia đối của tia CB lấy điểm M, trên tia đối của tia DC lấy điểm N sao cho BM = DN. Vẽ hình bình hành MANF, gọi O là trung điểm của AF. Chứng minh rằng:
Tứ giác MANF là hình vuông.
Câu 6:
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Qua điểm A vẽ hai tiếp tuyến AB, AC đến (O) (B, C là 2 tiếp điểm). Gọi H là giao điểm của OA và BC, qua H kẻ một đường thẳng vuông góc với OC cắt (O) tại M (M thuộc cung nhỏ BC), AM cắt (O) tại N (N khác M); gọi K là trung điểm MN.
a) Chứng minh tứ giác ABOC nội tiếp và AB.BM = AM.NB.
b) Chứng minh 5 điểm A, B, K, O, C cùng thuộc một đường tròn và \(\widehat {AMH} = \widehat {AON}\).
c) Kẻ OI vuông góc NB tại I. Chứng minh: I, K, H thẳng hàng.
Câu 7:
Cho hàm số y = (2m – 1)x + 2. Tìm m để:
a) Hàm số đã cho là hàm số bậc nhất;
b) Hàm số đã cho là hàm số đồng biến;
c) Đồ thị hàm số đi qua 2 điểm A (2; 4);
d) Đồ thị hàm số song song với đường thẳng y = 3x.
về câu hỏi!