Cho hình vuông ABCD. Qua A vẽ hai đường thẳng vuông góc với nhau lần lượt cắt BC tại P và R, cắt CD tại Q và S.
a) Chứng minh rằng tam giác AQR và tam giác APS là tam giác cân.
Cho hình vuông ABCD. Qua A vẽ hai đường thẳng vuông góc với nhau lần lượt cắt BC tại P và R, cắt CD tại Q và S.
a) Chứng minh rằng tam giác AQR và tam giác APS là tam giác cân.
Quảng cáo
Trả lời:

a)

Vì ABCD là hình vuông (giả thiết)
Nên AB = BC = CD = DA,
Ta có
Suy ra
Xét DABR và DADQ có:
;
AB = AD (chứng minh trên);
(chứng minh trên)
Do đó DABR = DADQ (g.c.g)
Suy ra AR = AQ (2 cạnh tương ứng)
Do đó DAQR cân tại A
Chứng minh tương tự ta có DADS = DABP (g.c.g)
Suy ra AS = AP (2 cạnh tương ứng)
Do đó tam giác APS cân tại A.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Nên góc có cùng điểm cuối với góc là .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.