Câu hỏi:

15/06/2023 2,564

Cho hình thang ABCD (AB < CD), AD cắt BC tại I, AC cắt BD tại O. Gọi M, N lần lượt là trung điểm của AB, DC. Chứng minh rằng I, M, O, N thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thang ABCD (AB < CD), AD cắt BC tại I, AC cắt BD tại O. Gọi M, N lần lượt là trung điểm của AB, DC. Chứng minh rằng I, M, O, N thẳng hàng. (ảnh 1)

• Gọi M’ là giao điểm của IN và AB. Ta cần chứng minh M’ M.

Trong DIDN có AM’ // DN nên theo hệ quả định lí Thalès ta có: AM'DN=IM'IN

Trong DICN có BM’ // CN nên theo hệ quả định lí Thalès ta có: BM'CN=IM'IN

Suy ra AM'DN=BM'CN=IM'IN

Mà DN = CN nên AM’ = BM’ hay M’ là trung điểm của AB.

Do đó M’ M nên I, M, N thẳng hàng (*)

• Qua O kẻ đường thẳng song song với CD cắt ID và IC lần lượt tại H và K.

Trong DADC có HO // DC nên theo hệ quả định lí Thalès ta có:  HODC=AOAC(1)

Trong DBDC có KO // DC nên theo hệ quả định lí Thalès ta có: KODC=BOBD   (2)

Trong DODC có AB // DC nên theo hệ quả định lí Thalès ta có: AOOC=BOOD

Suy ra AOAO+OC=BOBO+OD  hay  AOAC=BOBD(3)

Từ (1), (2) và (3) suy ra HODC=KODC , do đó HO = KO.

Chứng minh tương tự như trên ta có I, O, N thẳng hàng (**)

Từ (*) và (**) ta có I, M, O, N thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Giả sử điểm A(x0; y0) là điểm thuộc (P) và có tung độ gấp đôi hoành độ.

Suy ra y0 = 2x0.

Do điểm thuộc đồ thị (P) nên ta có y0=2x02

Khi đó 2x02=2x0

2x022x0=0

2x0x01=0

2x0=0x01=0

x0=0x0=1

Với x0 = 0 thì y0 = 0.

Với x0 = 1 thì y0 = 2.

Vậy có 2 điểm thỏa mãn yêu cầu đề bài là (0; 0) và (1; 2).

Lời giải

Biểu thức A có (100 – 1): 1 + 1 = 100 số hạng

Nhóm hai số hạng thành 1 nhóm ra được 100 : 2 = 50 nhóm

A = 1 – 2 + 3 – 4 + 5 – 6 + ... + 99 – 100

A = (1 – 2) + (3 – 4) + (5 – 6) + ... + (99 – 100)

A = (–1) + (–1) + (–1) + ... + (–1)

A = (–1) . 50 = –50

Vậy A = –50.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP