Câu hỏi:

13/07/2024 4,154

Cho tam giác ABC cân tại A (AB = AC). M là trung điểm của BC.

a) Chứng minh ∆AMB = ∆AMC và \(\widehat {BAM} = \widehat {CAM}\)

b) Qua M kẻ đường thẳng song song với AB cắt AC tại N. Chứng minh ∆MNC cân.

c) Chứng minh: N trung điểm của AC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC câCho tam giác ABC cân tại A (AB = AC). M là  trung điểm của BC. a) Chứng minhn tại A (AB = AC). M là  trung điểm của BC. a) Chứng minh (ảnh 1)

a) Xét ∆AMB và ∆AMC có:

AB = AC (do ∆ABC cân tại A)

AM là cạnh chung

BM = MC (do M là trung điểm của BC)

Do đó ∆AMB = ∆AMC (c.c.c)

Suy ra \(\widehat {BAM} = \widehat {CAM}\) (hai góc tương ứng)

b) Vì MN // AB (gt)

\( \Rightarrow \widehat B = \widehat {NMC}\) (đồng vị)

\(\widehat B = \widehat C\) (do ∆ABC cân tại A)

\( \Rightarrow \widehat C = \widehat {NMC}\)

\( \Rightarrow \) ∆MNC cân tại N

c) Vì ∆MNC cân tại N (theo câu b))

\( \Rightarrow \) NC = NM (1)

Vì MN//AB (gt)

\( \Rightarrow \widehat {BAM} = \widehat {AMN}\) (so le trong)

\(\widehat {BAM} = \widehat {CAM}\) (theo câu a))

\( \Rightarrow \widehat {CAM} = \widehat {AMN}\) hay \(\widehat {NAM} = \widehat {AMN}\)

\( \Rightarrow \) ∆MNA cân tại N

\( \Rightarrow \) AN = MN (2)

Từ (1) và (2) suy ra NC = AN

Mà điểm N nằm giữa hai điểm A và C.

Suy ra N là trung điểm của AC.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Nửa chu vi hình chữ nhật là: 40 : 2 = 20 (m)

Chiều dài của hình chữ nhật là:

(20 + 4) : 2 = 12 (m)

Chiều rộng của hình chữ nhật là:

20 – 12 = 8 (m)

Vậy diện tích của hình chữ nhật là:

12.8 = 96 (m2)

Đáp số: 96 m2.

Lời giải

\(M = \frac{{{{100}^{100}} + 1}}{{{{100}^{99}} + 1}}\)\( = \frac{{{{100}^{100}} + 100 - 99}}{{{{100}^{99}} + 1}}\)

\( = \frac{{100({{100}^{99}} + 1) - 99}}{{{{100}^{99}} + 1}} = 100 - \frac{{99}}{{{{100}^{99}} + 1}}\).

 \(N = \frac{{{{100}^{101}} + 1}}{{{{100}^{100}} + 1}}\)\( = \frac{{{{100}^{101}} + 100 - 99}}{{{{100}^{100}} + 1}}\)

\( = \frac{{100({{100}^{100}} + 1) - 99}}{{{{100}^{100}} + 1}} = 100 - \frac{{99}}{{{{100}^{100}} + 1}}\)

Ta có: \(\frac{{99}}{{{{100}^{99}} + 1}} > \frac{{99}}{{{{100}^{100}} + 1}}\).

Do đó M < N.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay