Câu hỏi:

11/07/2024 246

Tìm 2 số tự nhiên a và b khác 0, biết a + b = 35 và ƯCLN(a, b) = 7.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì ƯCLN(a, b) = 7 nên đặt a = 7k; b = 7q (ƯCLN(q, k) = 1; k < q)

Ta có: a + b = 35

7k + 7q = 35

7(k + q) = 35

k + q = 5

Ta có bảng: 

k

1

2

q

4

3

a

7

14

b

28

21

Vậy các cặp số (a, b) thỏa mãn là {(7; 28); (14; 21)}

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì khi xếp hàng 3 hoặc hàng 5 đều dư 2 em nên nếu bỏ đi 2 em thì số học sinh lớp 6A chia hết cho cả 3 và 5.

BC(3, 5) = {15, 30, 45,…}

Vì số học sinh lớp 6A từ 40 đến 50 em nên số học sinh lớp 6A là 45 em.

Đáp số: 45 em

Lời giải

Ta có: 2(10a + b) - (3a + 2b) = 20a + 2b - 3a - 2b = 17a.

 Vì 17 17 nên 17a 17.

 Do đó: 2(10a + b) - (3a +2b) 17

 Vì (3a + 2b) 17 nên 2(10a + b) 17

 Mà (2, 17) = 1 nên 10a + b 17

 Vậy nếu 3a + 2b 17 thì 10a + b 17.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP