Câu hỏi:

19/06/2023 517

Cho tam giác ABC vuông tại A (AB < AC) có AH là đường cao. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. Gọi S là giao điểm của BC, DE. M là trung điểm của BC. Chứng minh SH2 + AM2 = SM2.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A (AB < AC) có AH là đường cao. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. Gọi S là giao điểm của BC, DE. M là trung điểm của BC. Chứng minh SH2 + AM2 = SM2. (ảnh 1)

Tam giác ABC vuông tại A có AM là đường trung tuyến.

Suy ra AM = MB = MC.

Tứ giác ADHE, có: DAE^=ADE^=AEH^=90°

Suy ra tứ giác ADHE là hình chữ nhật.

Xét ∆ADE và ∆EHA, có:

AD = EH (ADHE là hình chữ nhật);

DAE^=AEH^=90°

AE chung.

Do đó ∆ADE = ∆EHA (c.g.c).

Suy ra ADE^=AHE^ (cặp góc tương ứng).

ADE^=SDB^ (đối đỉnh).

Do đó SDB^=AHE^

Vì vậy SDB^+90°=AHE^+90°

Suy ra SDB^+BDH^=AHE^+BHA^

Do đó SDH^=SHE^

Xét ∆SHD và ∆SEH, có:

DSH^ chung;

SDH^=SHE^ (chứng minh trên).

Do đó ΔSHDΔSEH(g.g).

Suy ra SHSE=SDSH

Vì vậy SH2 = SE.SD   (1)

Ta có AHE^=SCE^ (cùng phụ với HAC^).

SDB^=AHE^ (chứng minh trên).

Suy ra SDB^=SCE^

Xét ∆SBD và ∆SEC, có:

DSB^ chung;

SDB^=SCE^ (chứng minh trên).

Do đó ΔSBDΔSEC(g.g).

Suy ra SBSE=SDSC

Vì vậy SB.SC = SD.SE    (2)

Từ (1), (2), suy ra SH2 = SB.SC = (SM – MC)(SM + MC).

= SM2 – MC2 = SM2 – AM2.

Vậy SH2 + AM2 = SM2 (điều phải chứng minh).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khối lớp Năm của một trường tiểu học có 150 học sinh, trong đó có 52% là học sinh gái. Hỏi khối lớp Năm của trường đó có bao nhiêu học sinh trai?

Xem đáp án » 19/06/2023 11,320

Câu 2:

Tìm một số có 2 chữ số, biết rằng khi viết thêm chữ số 5 vào bên phải số đó ta được số lớn hơn số phải tìm 230 đơn vị.

Xem đáp án » 19/06/2023 5,435

Câu 3:

Gấp rưỡi là gấp bao nhiêu?

Xem đáp án » 19/06/2023 4,779

Câu 4:

Hiện nay tổng số tuổi của bố, mẹ và con là 66. Sau 10 năm nữa thì tổng số tuổi của hai mẹ con hơn tuổi của bố là 8 và tuổi mẹ bằng ba lần tuổi con. Tính số tuổi của mỗi người hiện nay.

Xem đáp án » 19/06/2023 3,379

Câu 5:

Biết a + 4b chia hết cho 13 (a, b ℕ). Chứng minh rằng 10a + b chia hết cho 13.

Xem đáp án » 19/06/2023 2,916

Câu 6:

Tìm giá trị lớn nhất của biểu thức sau: B = 12x – 8y – 4x2 – y2 + 1.

Xem đáp án » 19/06/2023 2,820

Câu 7:

Tìm a, b, c để f(x) = 2x4 + ax2 + bx + c chia hết cho x + 2 và f(x) chia cho x2 – 1 dư x.

Xem đáp án » 19/06/2023 2,804

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store