Câu hỏi:

25/06/2023 267

Chứng minh rằng A = 1 + 4 + 42 + … + 42021 chia hết cho 21.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

A = 1 + 4 + 42 + … + 42021

A = (1 + 4 + 42) + (43 + 44 + 45) + … + (42019 + 42020 + 42021)

A = (1 + 4 + 42) + 43(1 + 4 + 42) + … + 42019 (1 + 4 + 42)

A = (1 + 4 + 42)(1 + 43 + … + 42019)

A = 21 . (1 + 43 + … + 42019)

Vì 21 chia hết cho 21 nên 21 . (1 + 43 + … + 42019) chia hết cho 21.

Vậy A chia hết cho 21.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ban đầu Hùng có nhiều hơn Dũng:

5 + 5 = 10 (viên bi).

Số viên bi của bạn Hùng là:

(46 + 10) : 2 = 28 (viên bi).

Số viên bi của bạn Dũng là:

46 – 28 = 18 (viên bi).

Đáp số: Hùng: 28 viên bi; Dũng: 18 viên bi.

Lời giải

Cho hình bình hành ABCD. Gọi K, I lần lượt là trung điểm của AB và CD. Gọi M, N là giao điểm của AI, CK với BD. Chứng minh: a) ∆ADM = ∆CBN. (ảnh 1)

a) ABCD là hình bình hành

 AB // CD AB // IC

AB = CD

Mà K, I lần lượt là trung điểm của AB và CD.

AK = IC

Mà AK // IC

 AKIC là hình bình hành

Xét ΔADI và ΔBCKcó:

DI = BK

AI = CK

AD = BC

 ΔADI = ΔBCK (c.c.c)

DAI^=BCK^

Xét ΔADM và ΔCBN có: 

DAI^=BCK^

AD=BC

ADB^=DBC^ ( Do AD//BC)

 ΔADM = ΔCBN (g.c.g)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP