Câu hỏi:

13/07/2024 4,782

Cho tam giác ABC vuông tại A (AB < AC). Gọi M, N, E lần lượt là trung điểm của AB, AC, BC. Chứng minh rằng tứ giác ANEM là hình chữ nhật.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A (AB < AC). Gọi M, N, E lần lượt là trung điểm của AB, AC, BC. Chứng minh rằng tứ giác ANEM là hình chữ nhật. (ảnh 1)

Xét ΔABC vuông tại A có:

AE là đường trung tuyến ứng với cạnh huyền BC

Suy ra

Ta có: EA = EC nên E nằm trên đường trung trực của AC.

N là trung điểm của AC nên N nằm trên đường trung trực của AC.

Þ EN là đường trung trực của đoạn thẳng AC nên EN AC

ANE^=90°

Lại có: EA = EB nên E nằm trên đường trung trực của AB.

M là trung điểm của AB nên M nằm trên đường trung trực của AB.

Þ EM là đường trung trực của AB nên EM AB hay 0AME^=90°

Tứ giác AMEN có: ANE^=AME^=MAN^=90°

Þ ANEM là hình chữ nhật

Vậy ANEM là hình chữ nhật.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Áp dụng công thức ta có: i=Ζ1Ζ2

Vậy tỉ số truyền ở đây là: i=Ζ1Ζ2=8020=4.

Vậy chi tiết đĩa líp quay nhanh hơn đĩa xích 4 lần.

Lời giải

Chọn hệ trục tọa độ Oxy như hình vẽ.

Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol (hình vẽ). Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, (ảnh 2)

Phương trình Parabol (P) có dạng y = ax2 + bx + c

(P) đi qua điểm A(0; 0), B(162; 0) và M(10; 43) nên ta có:

c=0                                     1622.a+162b+c=0102.a+10b+c=43   c=0              a=431520b=3483760   

(P):y=431520x2+3483760x

Do đó chiều cao của cổng là:

h=Δ4a=b24ac4a185,6   (m)

Vậy độ cao của cổng Arch (tính từ mặt đất đến điểm cao nhất của cổng) khoảng 185,6 m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP