Câu hỏi:

11/07/2024 657

Cho tam giác ABC vuông tại C, đường cao CH, lấy điểm M trên AB và điểm N trên AC sao cho BM = BC và CN = CH. Chứng minh MN vuông góc với AC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại C, đường cao CH, lấy điểm M trên AB và điểm N trên AC sao cho BM = BC và CN = CH. Chứng minh MN vuông góc với AC. (ảnh 1)

Xét tam giác MCB có: BM = BC (giả thiết)

Suy ra tam giác MCB cân tại B, nên BCM^=HMC^

Xét tam giác CHM vuông tại H có HMC^+HCM^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90°)

Hay HCM^=90°HMC^

Ta có: MCN^+MCB^=ACB^=90°

Hay NCM^=90°MCB^

BCM^=HMC^, suy ra HCM^=MCN^

Xét tam giác MCH và tam giác MCN có:

CH = CN (giả thiết);

HCM^=MCN^ (chứng minh trên);

CM chung

Do đó ∆MCH = ∆MCN (c.g.c)

Suy ra CHM^=CNM^

CHM^=90°, do đó CNM^=90°

Hay MN vuông góc với AC

Vậy MN vuông góc với AC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: 19+28+37+...+91

=19+1+28+1+37+1+...+91+1+110
=109+108+107+...+101+110
=109+108+107+...+102+1
=1012+13+...+110

Suy ra

12+13+14+...+110x=19+28+37+...+91
12+13+14+...+110x=1012+13+14+...+110
x=10

Vậy x = 10.

Lời giải

. Cho hình thang cân ABCD có đáy lớn AB = 30 cm, đáy nhỏ CD = 10 cm và góc A=60 độ . a) Tính cạnh BC.                         (ảnh 1)

a) Kẻ CH AB, DK AB

Suy ra DK // CH (quan hệ từ vuông góc đến song song)

Mà CD // HK

Suy ra CDKH là hình bình hành

Lại có CHK^=90° nên CDKH là hình chữ nhật

Suy ra KH = CD = 10 (cm)

Vì ABCD là hình thang cân nên AD = BC và A^=B^=60°

Xét ∆AKD và ∆BHC có

A^=B^ (chứng minh trên);

AD = BC (chứng minh trên);

AKD^=BHC^=90°

Do đó ∆AKD = ∆BHC (cạnh huyền – góc nhọn)

Suy ra AK = BH

Ta có AB = AK + KH + BH = 30

Hay 2AK + 10 = 30

Suy ra AK = BH = 10 (cm)

Xét tam giác BCH vuông ở H

Suy ra BC=BHcosB^=10cos60°=20 (cm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay