Câu hỏi:

29/06/2023 194

Có bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau trong đó chứa các chữ số 3, 4, 5 và chữ số 4 đứng cạnh chữ số 3 và chữ số 5?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Sắp xếp cụm số 3, 4, 5 có 2 cách sắp xếp là 345 và 543

TH1: Cụm 2 số 3, 4, 5 đứng đầu có:

2 . 7 . 6 . 5 = 240 số thỏa mãn

TH2: Cụm 3 số 3, 4, 5 không đứng đầu có 3 cách sắp xếp là a345bc¯,ab345c¯,abc345¯

3 chữ số còn lại có: 6 . 6 . 5 = 180 cách chọn và sắp xếp

Do đó có 2 . 3 . 180 = 1 080 số thỏa mãn

Theo quy tắc cộng có:

420 + 1 080 = 1 500 số thỏa mãn yêu cầu bài toán

Vậy ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: 19+28+37+...+91

=19+1+28+1+37+1+...+91+1+110
=109+108+107+...+101+110
=109+108+107+...+102+1
=1012+13+...+110

Suy ra

12+13+14+...+110x=19+28+37+...+91
12+13+14+...+110x=1012+13+14+...+110
x=10

Vậy x = 10.

Lời giải

. Cho hình thang cân ABCD có đáy lớn AB = 30 cm, đáy nhỏ CD = 10 cm và góc A=60 độ . a) Tính cạnh BC.                         (ảnh 1)

a) Kẻ CH AB, DK AB

Suy ra DK // CH (quan hệ từ vuông góc đến song song)

Mà CD // HK

Suy ra CDKH là hình bình hành

Lại có CHK^=90° nên CDKH là hình chữ nhật

Suy ra KH = CD = 10 (cm)

Vì ABCD là hình thang cân nên AD = BC và A^=B^=60°

Xét ∆AKD và ∆BHC có

A^=B^ (chứng minh trên);

AD = BC (chứng minh trên);

AKD^=BHC^=90°

Do đó ∆AKD = ∆BHC (cạnh huyền – góc nhọn)

Suy ra AK = BH

Ta có AB = AK + KH + BH = 30

Hay 2AK + 10 = 30

Suy ra AK = BH = 10 (cm)

Xét tam giác BCH vuông ở H

Suy ra BC=BHcosB^=10cos60°=20 (cm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay