Câu hỏi:
12/07/2024 1,822
Cho tam giác ABC (AB < AC) đường cao AH. Gọi M, N, P lần lượt là trung điểm của cạnh BC, CA, AB.
a) Chứng minh NP là đường trung trực của AH.
Cho tam giác ABC (AB < AC) đường cao AH. Gọi M, N, P lần lượt là trung điểm của cạnh BC, CA, AB.
a) Chứng minh NP là đường trung trực của AH.
Quảng cáo
Trả lời:

a) Gọi I là giao điểm của AH và PN
Xét tam giác ABC có P, N là trung điểm của AB, AC
Do đó PN là đường trung bình của tam giác ABC
Suy ra PN // BC
Mà AH ⊥ BC nên PN ⊥ AH (1)
Ta có : PN // BC mà PI thuộc PN nên PI // BC
Xét tam giác AHB có PI // BC và P là trung điểm của AB
Suy ra I là trung điểm của AH (2)
Từ (1) và (2) suy ra PN là đg trung trực của AH.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có:
Suy ra
Vậy x = 10.
Lời giải

a) Kẻ CH ⊥ AB, DK ⊥ AB
Suy ra DK // CH (quan hệ từ vuông góc đến song song)
Mà CD // HK
Suy ra CDKH là hình bình hành
Lại có nên CDKH là hình chữ nhật
Suy ra KH = CD = 10 (cm)
Vì ABCD là hình thang cân nên AD = BC và
Xét ∆AKD và ∆BHC có
(chứng minh trên);
AD = BC (chứng minh trên);
Do đó ∆AKD = ∆BHC (cạnh huyền – góc nhọn)
Suy ra AK = BH
Ta có AB = AK + KH + BH = 30
Hay 2AK + 10 = 30
Suy ra AK = BH = 10 (cm)
Xét tam giác BCH vuông ở H
Suy ra (cm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.