Câu hỏi:
03/07/2023 1,260Quảng cáo
Trả lời:
Lời giải
Đặt \(\sqrt {{x^2} + 5x + 28} = t{\rm{ }}\left( {t > 0} \right)\)
⇒ x2 + 5x = t2 – 28
Phương trình trở thành: t2 – 28 + 4 – 5t = 0
⇔ t2 – 5t – 24 = 0 \( \Leftrightarrow \left[ \begin{array}{l}t = 8\,\,\,\left( {tm} \right)\\t = - 3\left( {ktm} \right)\end{array} \right.\)
Với t = 8 ta có \[\sqrt {{x^2} + 5x + 28} = 8\]
⇔ x2 + 5x + 28 = 64
⇔ x2 + 5x – 36 = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = - 9\end{array} \right.\)
Vậy \(x \in \left\{ {4; - 9} \right\}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Ta có: \[\left\{ \begin{array}{l}\overrightarrow {BI} = \overrightarrow {BA} + \overrightarrow {AI} \\\overrightarrow {BI} = \overrightarrow {BM} + \overrightarrow {MI} \end{array} \right.\]
\[ \Rightarrow 2\overrightarrow {BI} = \overrightarrow {BA} + \overrightarrow {BM} + \left( {\overrightarrow {AI} + \overrightarrow {MI} } \right) = \overrightarrow {BA} + \overrightarrow {BM} = \overrightarrow {BA} + \frac{{\overrightarrow {BC} }}{2}\]
\[ \Rightarrow 4\overrightarrow {BI} = 2\overrightarrow {BA} + \overrightarrow {BC} \]
Lại có: \(\overrightarrow {BK} = \overrightarrow {BA} + \overrightarrow {AK} = \overrightarrow {BA} + \frac{{\overrightarrow {AC} }}{3}\)
\( \Rightarrow 3\overrightarrow {BK} = 3\overrightarrow {BA} + \overrightarrow {AC} = 2\overrightarrow {BA} + \overrightarrow {BC} \)
Do đó: \(4\overrightarrow {BI} = 3\overrightarrow {BK} \) ⇒ B, I, K thẳng hàng.
Lời giải
Lời giải
Gọi A là biến cố “ba viên bi lấy được chỉ có hai màu”
Ta có: Số phần tử của không gian mẫu: \(C_{16}^3 = 560\)
Số cách chọn được ba viên bi chỉ có một màu: \(C_4^3 + C_5^3 + C_7^3 = 49\)
Số cách chọn được ba viên bi có đủ ba màu: \(C_4^1 + C_5^1 + C_7^1 = 140\)
Vậy xác suất cần tìm là: \({\rm P}\left( A \right) = 1 - \frac{{49 + 140}}{{560}} = \frac{{53}}{{80}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.