Câu hỏi:
03/07/2023 927Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Đặt \(\sqrt {{x^2} + 5x + 28} = t{\rm{ }}\left( {t > 0} \right)\)
⇒ x2 + 5x = t2 – 28
Phương trình trở thành: t2 – 28 + 4 – 5t = 0
⇔ t2 – 5t – 24 = 0 \( \Leftrightarrow \left[ \begin{array}{l}t = 8\,\,\,\left( {tm} \right)\\t = - 3\left( {ktm} \right)\end{array} \right.\)
Với t = 8 ta có \[\sqrt {{x^2} + 5x + 28} = 8\]
⇔ x2 + 5x + 28 = 64
⇔ x2 + 5x – 36 = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = - 9\end{array} \right.\)
Vậy \(x \in \left\{ {4; - 9} \right\}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 4:
Cho định lí “Cho số tự nhiên n, nếu n5 chia hết cho 5 thì n chia hết cho 5”.
Định lí này được viết dưới dạng P Þ Q. Hãy phát biểu định lí đảo của định lí trên rồi dùng các thuật ngữ “điều kiện cần và đủ” phát biểu gộp cả 2 định lí thuận và đảo.
Câu 5:
Câu 6:
Tìm giá trị của x để đa thức dư trong mỗi phép chia sau có giá trị bằng 0:
a) (3x5 – x4 – 2x3 + x2 + 4x + 5) : (x2 – 2x + 2);
b) (x5 + 2x4 + 3x2 + x – 3) : (x2 + 1).
Câu 7:
Cho đường tròn (O), đường kính BC = 2R, điểm A nằm ngoài đường tròn sao cho tam giác ABC nhọn. Từ A kẻ 2 tiếp tuyến AM, AN với đường tròn (O). Gọi H là trực tâm của tam giác ABC, F là giao điểm của AH và BC. Chứng minh rằng:
a, 5 điểm A, O, M, N, F cùng nằm trên 1 đường tròn.
b, 3 điểm M, N, H thẳng hàng.
c, HA . HF = R2 – OH2.
về câu hỏi!