Câu hỏi:

03/07/2023 2,587

Cho biểu thức:

\[A = \left( {\frac{{x - 5\sqrt x }}{{x - 25}} - 1} \right):\left( {\frac{{25 - x}}{{x + 2\sqrt x - 15}} - \frac{{\sqrt x + 3}}{{\sqrt x + 5}} + \frac{{\sqrt x - 5}}{{\sqrt x - 3}}} \right)\]

a) Rút gọn A.

b) Tìm x để A < 1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải                         

ĐKXĐ: x ≥ 0, x ≠ 25, x ≠ 9

a) \[A = \left( {\frac{{x - 5\sqrt x }}{{x - 25}} - 1} \right):\left( {\frac{{25 - x}}{{x + 2\sqrt x - 15}} - \frac{{\sqrt x + 3}}{{\sqrt x + 5}} + \frac{{\sqrt x - 5}}{{\sqrt x - 3}}} \right)\]

\[ = \frac{{x - 5\sqrt x - \left( {x - 25} \right)}}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}:\left[ {\frac{{25 - x}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}} - \frac{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}} + \frac{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}}} \right]\]

\[ = \frac{{ - 5\left( {\sqrt x - 5} \right)}}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}:\frac{{25 - x - \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) + x - 25}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}}\]

\[ = - \frac{5}{{\sqrt x + 5}}:\frac{{ - \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}}\]

\[ = - \frac{5}{{\sqrt x + 5}}.\frac{{ - \left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\]

\[ = - \frac{5}{{\sqrt x + 5}} \cdot \frac{{ - \left( {\sqrt x + 5} \right)}}{{\sqrt x + 3}}\]

\[ = \frac{5}{{\sqrt x + 3}}\].

b) Với x ≥ 0, x ≠ 25, x ≠ 9, ta có

A < 1 \[ \Leftrightarrow \frac{5}{{\sqrt x + 3}} < 1\] \[ \Leftrightarrow \frac{{5 - \left( {\sqrt x + 3} \right)}}{{\sqrt x + 3}} < 0 \Leftrightarrow \frac{{2 - \sqrt x }}{{\sqrt x + 3}} < 0\]

\( \Leftrightarrow 2 - \sqrt x < 0\) (vì \[\sqrt x + 3 > 0\] x ≥ 0, x ≠ 25, x ≠ 9)

\( \Leftrightarrow \sqrt x > 2 \Leftrightarrow x > 4\)

Kết hợp điều kiện x ≥ 0, x ≠ 25, x ≠ 9 ta được: x > 4, x ≠ 25, x ≠ 9.

Vậy để A < 1 thì x > 4, x ≠ 25, x ≠ 9

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Ta có: \[\left\{ \begin{array}{l}\overrightarrow {BI} = \overrightarrow {BA} + \overrightarrow {AI} \\\overrightarrow {BI} = \overrightarrow {BM} + \overrightarrow {MI} \end{array} \right.\]

\[ \Rightarrow 2\overrightarrow {BI} = \overrightarrow {BA} + \overrightarrow {BM} + \left( {\overrightarrow {AI} + \overrightarrow {MI} } \right) = \overrightarrow {BA} + \overrightarrow {BM} = \overrightarrow {BA} + \frac{{\overrightarrow {BC} }}{2}\]

\[ \Rightarrow 4\overrightarrow {BI} = 2\overrightarrow {BA} + \overrightarrow {BC} \]

Lại có: \(\overrightarrow {BK} = \overrightarrow {BA} + \overrightarrow {AK} = \overrightarrow {BA} + \frac{{\overrightarrow {AC} }}{3}\)

\( \Rightarrow 3\overrightarrow {BK} = 3\overrightarrow {BA} + \overrightarrow {AC} = 2\overrightarrow {BA} + \overrightarrow {BC} \)

Do đó: \(4\overrightarrow {BI} = 3\overrightarrow {BK} \) B, I, K thẳng hàng.

Lời giải

Lời giải

Gọi A là biến cố “ba viên bi lấy được chỉ có hai màu”

Ta có: Số phần tử của không gian mẫu: \(C_{16}^3 = 560\)

Số cách chọn được ba viên bi chỉ có một màu: \(C_4^3 + C_5^3 + C_7^3 = 49\)

Số cách chọn được ba viên bi có đủ ba màu: \(C_4^1 + C_5^1 + C_7^1 = 140\)

Vậy xác suất cần tìm là: \({\rm P}\left( A \right) = 1 - \frac{{49 + 140}}{{560}} = \frac{{53}}{{80}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP