Câu hỏi:
03/07/2023 2,270Cho biểu thức:
\[A = \left( {\frac{{x - 5\sqrt x }}{{x - 25}} - 1} \right):\left( {\frac{{25 - x}}{{x + 2\sqrt x - 15}} - \frac{{\sqrt x + 3}}{{\sqrt x + 5}} + \frac{{\sqrt x - 5}}{{\sqrt x - 3}}} \right)\]
a) Rút gọn A.
b) Tìm x để A < 1.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
ĐKXĐ: x ≥ 0, x ≠ 25, x ≠ 9
a) \[A = \left( {\frac{{x - 5\sqrt x }}{{x - 25}} - 1} \right):\left( {\frac{{25 - x}}{{x + 2\sqrt x - 15}} - \frac{{\sqrt x + 3}}{{\sqrt x + 5}} + \frac{{\sqrt x - 5}}{{\sqrt x - 3}}} \right)\]
\[ = \frac{{x - 5\sqrt x - \left( {x - 25} \right)}}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}:\left[ {\frac{{25 - x}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}} - \frac{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}} + \frac{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}}} \right]\]
\[ = \frac{{ - 5\left( {\sqrt x - 5} \right)}}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}:\frac{{25 - x - \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) + x - 25}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}}\]
\[ = - \frac{5}{{\sqrt x + 5}}:\frac{{ - \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}}\]
\[ = - \frac{5}{{\sqrt x + 5}}.\frac{{ - \left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\]
\[ = - \frac{5}{{\sqrt x + 5}} \cdot \frac{{ - \left( {\sqrt x + 5} \right)}}{{\sqrt x + 3}}\]
\[ = \frac{5}{{\sqrt x + 3}}\].
b) Với x ≥ 0, x ≠ 25, x ≠ 9, ta có
A < 1 \[ \Leftrightarrow \frac{5}{{\sqrt x + 3}} < 1\] ⇔ \[ \Leftrightarrow \frac{{5 - \left( {\sqrt x + 3} \right)}}{{\sqrt x + 3}} < 0 \Leftrightarrow \frac{{2 - \sqrt x }}{{\sqrt x + 3}} < 0\]
\( \Leftrightarrow 2 - \sqrt x < 0\) (vì \[\sqrt x + 3 > 0\] ∀x ≥ 0, x ≠ 25, x ≠ 9)
\( \Leftrightarrow \sqrt x > 2 \Leftrightarrow x > 4\)
Kết hợp điều kiện x ≥ 0, x ≠ 25, x ≠ 9 ta được: x > 4, x ≠ 25, x ≠ 9.
Vậy để A < 1 thì x > 4, x ≠ 25, x ≠ 9
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Tìm giá trị của x để đa thức dư trong mỗi phép chia sau có giá trị bằng 0:
a) (3x5 – x4 – 2x3 + x2 + 4x + 5) : (x2 – 2x + 2);
b) (x5 + 2x4 + 3x2 + x – 3) : (x2 + 1).
Câu 7:
Cho định lí “Cho số tự nhiên n, nếu n5 chia hết cho 5 thì n chia hết cho 5”.
Định lí này được viết dưới dạng P Þ Q. Hãy phát biểu định lí đảo của định lí trên rồi dùng các thuật ngữ “điều kiện cần và đủ” phát biểu gộp cả 2 định lí thuận và đảo.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận