Câu hỏi:

03/07/2023 2,428

Cho biểu thức:

\[A = \left( {\frac{{x - 5\sqrt x }}{{x - 25}} - 1} \right):\left( {\frac{{25 - x}}{{x + 2\sqrt x - 15}} - \frac{{\sqrt x + 3}}{{\sqrt x + 5}} + \frac{{\sqrt x - 5}}{{\sqrt x - 3}}} \right)\]

a) Rút gọn A.

b) Tìm x để A < 1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải                         

ĐKXĐ: x ≥ 0, x ≠ 25, x ≠ 9

a) \[A = \left( {\frac{{x - 5\sqrt x }}{{x - 25}} - 1} \right):\left( {\frac{{25 - x}}{{x + 2\sqrt x - 15}} - \frac{{\sqrt x + 3}}{{\sqrt x + 5}} + \frac{{\sqrt x - 5}}{{\sqrt x - 3}}} \right)\]

\[ = \frac{{x - 5\sqrt x - \left( {x - 25} \right)}}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}:\left[ {\frac{{25 - x}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}} - \frac{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}} + \frac{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}}} \right]\]

\[ = \frac{{ - 5\left( {\sqrt x - 5} \right)}}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}:\frac{{25 - x - \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) + x - 25}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}}\]

\[ = - \frac{5}{{\sqrt x + 5}}:\frac{{ - \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}}\]

\[ = - \frac{5}{{\sqrt x + 5}}.\frac{{ - \left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\]

\[ = - \frac{5}{{\sqrt x + 5}} \cdot \frac{{ - \left( {\sqrt x + 5} \right)}}{{\sqrt x + 3}}\]

\[ = \frac{5}{{\sqrt x + 3}}\].

b) Với x ≥ 0, x ≠ 25, x ≠ 9, ta có

A < 1 \[ \Leftrightarrow \frac{5}{{\sqrt x + 3}} < 1\] \[ \Leftrightarrow \frac{{5 - \left( {\sqrt x + 3} \right)}}{{\sqrt x + 3}} < 0 \Leftrightarrow \frac{{2 - \sqrt x }}{{\sqrt x + 3}} < 0\]

\( \Leftrightarrow 2 - \sqrt x < 0\) (vì \[\sqrt x + 3 > 0\] x ≥ 0, x ≠ 25, x ≠ 9)

\( \Leftrightarrow \sqrt x > 2 \Leftrightarrow x > 4\)

Kết hợp điều kiện x ≥ 0, x ≠ 25, x ≠ 9 ta được: x > 4, x ≠ 25, x ≠ 9.

Vậy để A < 1 thì x > 4, x ≠ 25, x ≠ 9

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có AM là trung tuyến. Gọi I là trung điểm AM và K là một điểm trên cạnh AC sao cho AK = 1/3 AC. Chứng minh ba điểm B, I, K thẳng hàng.

Xem đáp án » 03/07/2023 13,839

Câu 2:

Cho một hộp đựng 4 viên bi đỏ, 5 viên bi xanh và 7 viên bi vàng. Lấy ngẫu nhiên một lần ba viên bi. Tính xác suất để trong ba viên bi lấy được chỉ có hai màu.

Xem đáp án » 03/07/2023 6,280

Câu 3:

Tính hợp lý: (102 + 112 + 122) : (132 + 142).

Xem đáp án » 03/07/2023 6,068

Câu 4:

Tìm nghiệm nguyên của phương trình: y2 = x(x + 1)(x + 7)(x + 8).

Xem đáp án » 03/07/2023 5,850

Câu 5:

Một hộp đựng 7 viên bi xanh, 5 viên bi đỏ và 4 viên bi vàng. Có bao nhiêu cách lấy ra 8 viên bi có đủ 3 màu?

Xem đáp án » 03/07/2023 3,806

Câu 6:

Tìm giá trị của x để đa thức dư trong mỗi phép chia sau có giá trị bằng 0:

a) (3x5 – x4 – 2x3 + x2 + 4x + 5) : (x2 – 2x + 2);

b) (x5 + 2x4 + 3x2 + x – 3) : (x2 + 1).

Xem đáp án » 03/07/2023 3,657

Câu 7:

Tháng 2 năm nào đó có 5 ngày thứ Năm. Hỏi ngày 1 tháng đó là thứ mấy? Chủ nhật tháng đó vào những ngày nào?

Xem đáp án » 03/07/2023 3,638
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua