Câu hỏi:
03/07/2023 137Cho (O; R) và (O; R') tiếp xúc ngoài tại A. Kẻ dây cung AM của (O) và dây cung AN của (O') sao cho AM vuông góc với AN. Chứng minh:
a) OM song song O'N;
b) Xác định vị trí của AM và AN để diện tích tứ giác OMNO' lớn nhất.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Xét ∆MAN vuông tại A có: \(\widehat {AMN} + \widehat {ANM} = 90^\circ \) (1)
Và \[\widehat {MAO} + \widehat {NAO'} = 90^\circ = 180^\circ - \widehat {MAO} = 180^\circ - 90^\circ = 90^\circ \] (2)
Lại có: ∆OMA cân tại O (OA = OM = R) ⟹ \[\widehat {OAM} = \widehat {OMA}\] (3)
∆O’NA cân tại O (O’A = O’N = R’) ⟹ \[\widehat {O'AN} = \widehat {O'NA}\](4)
Từ (1), (2), (3) và (4) suy ra:
\[\widehat {OMN} + \widehat {MNO'} = \left( {\widehat {OMA} + \widehat {AMN}} \right) + \left( {\widehat {ANM} + \widehat {O'NA}} \right)\]
\[ = \widehat {OMA} + \widehat {AMN} + \widehat {ANM} + \widehat {O'NA}\]
\[ = \widehat {OAM} + \widehat {AMN} + \widehat {ANM} + \widehat {O'AN}\]
\[ = \left( {\widehat {OAM} + \widehat {O'AN}} \right) + \left( {\widehat {AMN} + \widehat {ANM}} \right)\]
\[ = 90^\circ + 90^\circ \]
\[ = 180^\circ \]
Tứ giác OMNO’ có \[\widehat {OMN} + \widehat {MNO'} = 180^\circ \] nên MN // O’N.
b) Từ O’ kẻ O’H ⊥ OM. Khi đó:
\({S_{OMNO'}} = \frac{{\left( {O'N + OM} \right).O'H}}{2} = \frac{{\left( {R' + R} \right).O'H}}{2} \le \frac{{\left( {R' + R} \right).O'O}}{2} = \frac{{{{\left( {R' + R} \right)}^2}}}{2}\)
Dấu bằng xảy ra khi và chỉ khi O’H = O’O hay H ≡ O
⇒ O’O ⊥ MO hoặc O’O ⊥ O’N
Vậy tứ giác MNO’O có diện tích lớn nhất là \(\frac{{{{\left( {R' + R} \right)}^2}}}{2}\) khi O’O ⊥ MO hoặc O’O ⊥ O’N.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 4:
Cho định lí “Cho số tự nhiên n, nếu n5 chia hết cho 5 thì n chia hết cho 5”.
Định lí này được viết dưới dạng P Þ Q. Hãy phát biểu định lí đảo của định lí trên rồi dùng các thuật ngữ “điều kiện cần và đủ” phát biểu gộp cả 2 định lí thuận và đảo.
Câu 5:
Câu 6:
Tìm giá trị của x để đa thức dư trong mỗi phép chia sau có giá trị bằng 0:
a) (3x5 – x4 – 2x3 + x2 + 4x + 5) : (x2 – 2x + 2);
b) (x5 + 2x4 + 3x2 + x – 3) : (x2 + 1).
Câu 7:
Cho đường tròn (O), đường kính BC = 2R, điểm A nằm ngoài đường tròn sao cho tam giác ABC nhọn. Từ A kẻ 2 tiếp tuyến AM, AN với đường tròn (O). Gọi H là trực tâm của tam giác ABC, F là giao điểm của AH và BC. Chứng minh rằng:
a, 5 điểm A, O, M, N, F cùng nằm trên 1 đường tròn.
b, 3 điểm M, N, H thẳng hàng.
c, HA . HF = R2 – OH2.
về câu hỏi!