Câu hỏi:
03/07/2023 584Cho tứ diện S.ABC có đáy là tam giác đều ABC có đường cao AH = 2a. Gọi O là trung điểm AH, SO vuông góc mp(ABC) và SO = 2a. Gọi I là một điểm trên OH, đặt AI = x (a < x < 2a) và (α) là mặt phẳng qua I và (α) vuông góc AH.
a) Xác định thiết diện của (α) với tứ diện S.ABC.
b) Tính diện tích thiết diện của (α) và S.ABC theo a và x.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) • Ta có: BC ⊥ OH
Qua I, dựng MQ // BC (M ∈ AB, Q ∈ AC) thì MQ ⊥ OH.
Mặt khác, ta có: SO ⊥ OH.
Dựng IJ // OS (J ∈ SH) thì IJ ∈ OH.
Do đó mp(α) là mặt phẳng (JMQ).
• Ta có: MQ // BC nên (α) // BC.
Suy ra (α) cắt (SBC) theo giao tuyến qua J và song song với BC.
Do đó, qua J dựng đường thẳng song song với BC, cắt SB và SC tại N và P ta được MNPQ là thiết diện cần dựng.
Vì NP // MQ // BC nên MNPQ là hình thang.
Ta có: OB = OC Þ DSOB = DSOC Þ SB = SC
Þ DSAB = DSAC \( \Rightarrow \widehat {SBA} = \widehat {SCA}\).
Ta cũng có: BN = CP, BM = CQ, do đó: DBMN = DCQP.
Do đó: MN = QP suy ra MP = NQ.
Vậy thiết diện là hình thang cân.
c) Do AH = 2a, ta tính được \(BC = \frac{{4a\sqrt 3 }}{3}\)
\(\frac{{MQ}}{{BC}} = \frac{{AI}}{{AH}} = \frac{x}{{2a}} \Rightarrow MQ = \frac{x}{{2a}}.\frac{{4a\sqrt 3 }}{3} = \frac{{2x\sqrt 3 }}{3}\)
\(\frac{{NP}}{{BC}} = \frac{{SJ}}{{SH}} = \frac{{OI}}{{OH}} = \frac{{x - a}}{a}\)
\( \Rightarrow NP = \frac{{x - a}}{a}.\frac{{4a\sqrt 3 }}{3} = \frac{{4\left( {x - a} \right)\sqrt 3 }}{3}\)
\(\frac{{IJ}}{{OS}} = \frac{{HI}}{{HO}} = \frac{{2a - x}}{a} \Rightarrow IJ = 2\left( {2a.x} \right)\)
\({S_{MNP}} = \frac{1}{2}\left( {MQ + NP} \right)IJ = \frac{1}{2}\left( {\frac{{2x\sqrt 3 }}{3} + \frac{{4\left( {x - a} \right)\sqrt 3 }}{3}} \right)2\left( {2a - x} \right)\)
\( = \frac{{2\sqrt 3 }}{3}\left( {3x - 2a} \right)\left( {2a - x} \right)\).
Àp dụng bất đẳng thức Cô-si:
\(\begin{array}{*{20}{r}}{}&{S = 2\sqrt 3 \left( {x - \frac{2}{3}} \right)\left( {2a - x} \right) \le 2\sqrt 3 {{\left( {\frac{{x - - a + 2a - x}}{3}} \right)}^2} = \frac{{8\sqrt 3 }}{9}{a^2}}\end{array}\)
Dấu "=" xảy ra khi \(x.\frac{2}{3}a = 2a - x \Leftrightarrow x = \frac{4}{9}a{\rm{\;}}\left( {tm} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 4:
Cho định lí “Cho số tự nhiên n, nếu n5 chia hết cho 5 thì n chia hết cho 5”.
Định lí này được viết dưới dạng P Þ Q. Hãy phát biểu định lí đảo của định lí trên rồi dùng các thuật ngữ “điều kiện cần và đủ” phát biểu gộp cả 2 định lí thuận và đảo.
Câu 5:
Câu 6:
Tìm giá trị của x để đa thức dư trong mỗi phép chia sau có giá trị bằng 0:
a) (3x5 – x4 – 2x3 + x2 + 4x + 5) : (x2 – 2x + 2);
b) (x5 + 2x4 + 3x2 + x – 3) : (x2 + 1).
Câu 7:
Cho đường tròn (O), đường kính BC = 2R, điểm A nằm ngoài đường tròn sao cho tam giác ABC nhọn. Từ A kẻ 2 tiếp tuyến AM, AN với đường tròn (O). Gọi H là trực tâm của tam giác ABC, F là giao điểm của AH và BC. Chứng minh rằng:
a, 5 điểm A, O, M, N, F cùng nằm trên 1 đường tròn.
b, 3 điểm M, N, H thẳng hàng.
c, HA . HF = R2 – OH2.
về câu hỏi!