Câu hỏi:

03/07/2023 1,488 Lưu

Cho tam giác ABC vuông tại A, đường cao AH, M là trung điểm của BC, có BH = 4 cm, CH = 9 cm. Tính diện tích tam giác AHM?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Vì ABC vuông tại A và AH là đường cao nên ta có:

AH2 = BH . HC  AH2 = 4 . 9 = 36  AH = 6 (cm).

Vì AM là đường trung tuyến của ∆ABC nên ta có:

\[AM = \frac{1}{2}BC = \frac{1}{2}\left( {4 + 9} \right) = \frac{{13}}{2}\]

\[ \Rightarrow HM = \sqrt {A{M^2} - A{H^2}} = \sqrt {{{\left( {\frac{{13}}{2}} \right)}^2} - {6^2}} = \frac{5}{2}\]
\[ \Rightarrow {S_{AHM}} = \frac{1}{2}AH.HM = \frac{1}{2} \cdot 6 \cdot \frac{5}{2} = \frac{{15}}{2}\left( {c{m^2}} \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Ta có: \[\left\{ \begin{array}{l}\overrightarrow {BI} = \overrightarrow {BA} + \overrightarrow {AI} \\\overrightarrow {BI} = \overrightarrow {BM} + \overrightarrow {MI} \end{array} \right.\]

\[ \Rightarrow 2\overrightarrow {BI} = \overrightarrow {BA} + \overrightarrow {BM} + \left( {\overrightarrow {AI} + \overrightarrow {MI} } \right) = \overrightarrow {BA} + \overrightarrow {BM} = \overrightarrow {BA} + \frac{{\overrightarrow {BC} }}{2}\]

\[ \Rightarrow 4\overrightarrow {BI} = 2\overrightarrow {BA} + \overrightarrow {BC} \]

Lại có: \(\overrightarrow {BK} = \overrightarrow {BA} + \overrightarrow {AK} = \overrightarrow {BA} + \frac{{\overrightarrow {AC} }}{3}\)

\( \Rightarrow 3\overrightarrow {BK} = 3\overrightarrow {BA} + \overrightarrow {AC} = 2\overrightarrow {BA} + \overrightarrow {BC} \)

Do đó: \(4\overrightarrow {BI} = 3\overrightarrow {BK} \) B, I, K thẳng hàng.

Lời giải

Lời giải.

(102 + 112 + 122) : (132 + 142)

= (10 × 10 + 11 × 11 + 12 × 12) : (132 + 142)

= [(12 + 1)2 + (12 + 2)2] : (132 + 142)

= (132 + 142) : (132 + 142)

= 1

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP