Câu hỏi:
03/07/2023 1,763Cho đường tròn (O), đường kính AB cố định, M là 1 điểm thuộc (O), (M khác A và B). Các tiếp tuyến của (O) tại A và M cắt nhau ở C. Đường tròn (I) đi qua M và tiếp xúc với đường thẳng AC tại C, CD là đường kính của (I). Chứng minh rằng:
a) 3 điểm O, M, D thẳng hàng.
b) Tam giác COD là tam giác cân.
c) Gọi N là giao điểm của OC và (I). Chứng minh khi M thay đổi thì đường thẳng qua N vuông góc với AB luôn đi qua điểm cố định.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
a) Do (I) tiếp xúc với AC tại C nên I ∈ đường thẳng vuông góc với AC tại C
Gọi D’ là giao của đường thẳng vuông góc với AC tại C với OM
Ta có: ∆CMD’ vuông tại M (CM nằm trên đường thẳng tiếp xúc với (O)) (1)
Lại có: (I) qua M và tiếp xúc với AC tại C tức là (I) qua M và C ⇒ IM = IC (2)
Từ (1) và (2) ⇒ I là trung điểm của CD’ (theo định lí về trung điểm và cạnh huyền của tam giác vuông)
⇒ CD’ là đường kính của (I) do ∆CMD’ vuông tại M (3)
Theo giả thiết: CD là đường kính của (I) (4)
Từ (3) và (4) ⇒ D ≡ D’ hay 3 điểm O, M, D thẳng hàng (vì D’ ∈ OM)
b) Do CA và CM là 2 tiếp tuyến của (O) cắt nhau tại C \( \Rightarrow {\widehat O_1} = {\widehat O_2}\) (theo định lí tiếp tuyến thì OC là phân giác của \(\widehat {AOM}\) (5)
Mặt khác: CD ⊥ AC và OA ⊥ AC ⇒ CD // OA \( \Rightarrow {\widehat C_1} = {\widehat O_1}\) (so le trong) (6)
Từ (5) và (6) \( \Rightarrow {\widehat C_1} = {\widehat O_2}\) ⇒ ∆CDO cân tại D
c) Do N ∈ (I) ⇒ \(\widehat {CND} = 90^\circ \) (CN ⊥ ND)
Mặt khác: N ∈ OC ⇒ N là chân đường vuông góc từ D xuống OC
Mà ∆CDO cân tại D nên DN đồng thời là đường trung tuyến ⇒ NC = NO
Gọi (d) là đường thẳng qua N và vuông góc với AB
Gọi H là giao điểm của (d) và AB ⇒ NH ⊥ AB
Xét ∆ACO và ∆HNO có \[\widehat {CAO} = \widehat {NHO} = 90^\circ \], \[{\widehat O_1}\] là góc chung
⇒ ∆ACO đồng dạng với ∆HNO (góc – góc)
⇒ \(\frac{{ON}}{{OC}} = \frac{{OH}}{{OA}} = \frac{1}{2}\) (do NO = NC)
⇒ H là trung điểm của OA (là điểm cố định do OA cố định)
Vậy khi M thay đổi thì đường thẳng qua N vuông góc với AB luôn đi qua điểm cố định H.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Tìm giá trị của x để đa thức dư trong mỗi phép chia sau có giá trị bằng 0:
a) (3x5 – x4 – 2x3 + x2 + 4x + 5) : (x2 – 2x + 2);
b) (x5 + 2x4 + 3x2 + x – 3) : (x2 + 1).
Câu 7:
Cho định lí “Cho số tự nhiên n, nếu n5 chia hết cho 5 thì n chia hết cho 5”.
Định lí này được viết dưới dạng P Þ Q. Hãy phát biểu định lí đảo của định lí trên rồi dùng các thuật ngữ “điều kiện cần và đủ” phát biểu gộp cả 2 định lí thuận và đảo.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận