Câu hỏi:
03/07/2023 2,146Cho đường tròn (O), đường kính AB cố định, M là 1 điểm thuộc (O), (M khác A và B). Các tiếp tuyến của (O) tại A và M cắt nhau ở C. Đường tròn (I) đi qua M và tiếp xúc với đường thẳng AC tại C, CD là đường kính của (I). Chứng minh rằng:
a) 3 điểm O, M, D thẳng hàng.
b) Tam giác COD là tam giác cân.
c) Gọi N là giao điểm của OC và (I). Chứng minh khi M thay đổi thì đường thẳng qua N vuông góc với AB luôn đi qua điểm cố định.
Quảng cáo
Trả lời:
Lời giải
a) Do (I) tiếp xúc với AC tại C nên I ∈ đường thẳng vuông góc với AC tại C
Gọi D’ là giao của đường thẳng vuông góc với AC tại C với OM
Ta có: ∆CMD’ vuông tại M (CM nằm trên đường thẳng tiếp xúc với (O)) (1)
Lại có: (I) qua M và tiếp xúc với AC tại C tức là (I) qua M và C ⇒ IM = IC (2)
Từ (1) và (2) ⇒ I là trung điểm của CD’ (theo định lí về trung điểm và cạnh huyền của tam giác vuông)
⇒ CD’ là đường kính của (I) do ∆CMD’ vuông tại M (3)
Theo giả thiết: CD là đường kính của (I) (4)
Từ (3) và (4) ⇒ D ≡ D’ hay 3 điểm O, M, D thẳng hàng (vì D’ ∈ OM)
b) Do CA và CM là 2 tiếp tuyến của (O) cắt nhau tại C \( \Rightarrow {\widehat O_1} = {\widehat O_2}\) (theo định lí tiếp tuyến thì OC là phân giác của \(\widehat {AOM}\) (5)
Mặt khác: CD ⊥ AC và OA ⊥ AC ⇒ CD // OA \( \Rightarrow {\widehat C_1} = {\widehat O_1}\) (so le trong) (6)
Từ (5) và (6) \( \Rightarrow {\widehat C_1} = {\widehat O_2}\) ⇒ ∆CDO cân tại D
c) Do N ∈ (I) ⇒ \(\widehat {CND} = 90^\circ \) (CN ⊥ ND)
Mặt khác: N ∈ OC ⇒ N là chân đường vuông góc từ D xuống OC
Mà ∆CDO cân tại D nên DN đồng thời là đường trung tuyến ⇒ NC = NO
Gọi (d) là đường thẳng qua N và vuông góc với AB
Gọi H là giao điểm của (d) và AB ⇒ NH ⊥ AB
Xét ∆ACO và ∆HNO có \[\widehat {CAO} = \widehat {NHO} = 90^\circ \], \[{\widehat O_1}\] là góc chung
⇒ ∆ACO đồng dạng với ∆HNO (góc – góc)
⇒ \(\frac{{ON}}{{OC}} = \frac{{OH}}{{OA}} = \frac{1}{2}\) (do NO = NC)
⇒ H là trung điểm của OA (là điểm cố định do OA cố định)
Vậy khi M thay đổi thì đường thẳng qua N vuông góc với AB luôn đi qua điểm cố định H.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Ta có: \[\left\{ \begin{array}{l}\overrightarrow {BI} = \overrightarrow {BA} + \overrightarrow {AI} \\\overrightarrow {BI} = \overrightarrow {BM} + \overrightarrow {MI} \end{array} \right.\]
\[ \Rightarrow 2\overrightarrow {BI} = \overrightarrow {BA} + \overrightarrow {BM} + \left( {\overrightarrow {AI} + \overrightarrow {MI} } \right) = \overrightarrow {BA} + \overrightarrow {BM} = \overrightarrow {BA} + \frac{{\overrightarrow {BC} }}{2}\]
\[ \Rightarrow 4\overrightarrow {BI} = 2\overrightarrow {BA} + \overrightarrow {BC} \]
Lại có: \(\overrightarrow {BK} = \overrightarrow {BA} + \overrightarrow {AK} = \overrightarrow {BA} + \frac{{\overrightarrow {AC} }}{3}\)
\( \Rightarrow 3\overrightarrow {BK} = 3\overrightarrow {BA} + \overrightarrow {AC} = 2\overrightarrow {BA} + \overrightarrow {BC} \)
Do đó: \(4\overrightarrow {BI} = 3\overrightarrow {BK} \) ⇒ B, I, K thẳng hàng.
Lời giải
Lời giải
Gọi A là biến cố “ba viên bi lấy được chỉ có hai màu”
Ta có: Số phần tử của không gian mẫu: \(C_{16}^3 = 560\)
Số cách chọn được ba viên bi chỉ có một màu: \(C_4^3 + C_5^3 + C_7^3 = 49\)
Số cách chọn được ba viên bi có đủ ba màu: \(C_4^1 + C_5^1 + C_7^1 = 140\)
Vậy xác suất cần tìm là: \({\rm P}\left( A \right) = 1 - \frac{{49 + 140}}{{560}} = \frac{{53}}{{80}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận