Câu hỏi:

03/07/2023 191

Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy 2, 4, n (n > 3) điểm phân biệt (các điểm không trùng với các đỉnh của tam giác). Tìm n, biết rằng số tam giác có các đỉnh thuộc n + 6 điểm đã cho là 247.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là: C

Mỗi tam giác được lập thành do một cách chọn 3 điểm sao cho 3 điểm đó không thẳng hàng tức là không cùng nằm trên một cạnh của tam giác ABC.

Chọn ngẫu nhiên 3 điểm từ n+6 điểm đã cho có: \(C_{n + 6}^3\) (cách)

Chọn 3 điểm chỉ nằm trên đúng 1 cạnh của tam giác ABC có: \(C_4^3 + C_n^3\) (cách)

Số tam giác lập thành là:                     

\(C_{n + 6}^3 - \left( {C_4^3 + C_n^3} \right) = 247\)

\( \Leftrightarrow \frac{{\left( {n + 6} \right)!}}{{3!.\left( {n + 3} \right)!}} - \left[ {4 + \frac{{n!}}{{3!.\left( {n - 3} \right)!}}} \right] = 247\)

\( \Leftrightarrow \frac{{\left( {n + 6} \right)\left( {n + 5} \right)\left( {n + 4} \right)}}{6} - \left[ {4 + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{6}} \right] = 247\)

(n + 6)(n + 5)(n + 4) – n(n – 1)(n – 2) = 1506

18n2 + 72n – 1386 = 0

\( \Leftrightarrow \left[ \begin{array}{l}n = - 11\\n = 7\end{array} \right.\)

Vì n > 3 nên n = 7.

Vậy đáp án đúng là C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Ta có: \[\left\{ \begin{array}{l}\overrightarrow {BI} = \overrightarrow {BA} + \overrightarrow {AI} \\\overrightarrow {BI} = \overrightarrow {BM} + \overrightarrow {MI} \end{array} \right.\]

\[ \Rightarrow 2\overrightarrow {BI} = \overrightarrow {BA} + \overrightarrow {BM} + \left( {\overrightarrow {AI} + \overrightarrow {MI} } \right) = \overrightarrow {BA} + \overrightarrow {BM} = \overrightarrow {BA} + \frac{{\overrightarrow {BC} }}{2}\]

\[ \Rightarrow 4\overrightarrow {BI} = 2\overrightarrow {BA} + \overrightarrow {BC} \]

Lại có: \(\overrightarrow {BK} = \overrightarrow {BA} + \overrightarrow {AK} = \overrightarrow {BA} + \frac{{\overrightarrow {AC} }}{3}\)

\( \Rightarrow 3\overrightarrow {BK} = 3\overrightarrow {BA} + \overrightarrow {AC} = 2\overrightarrow {BA} + \overrightarrow {BC} \)

Do đó: \(4\overrightarrow {BI} = 3\overrightarrow {BK} \) B, I, K thẳng hàng.

Lời giải

Lời giải

Gọi A là biến cố “ba viên bi lấy được chỉ có hai màu”

Ta có: Số phần tử của không gian mẫu: \(C_{16}^3 = 560\)

Số cách chọn được ba viên bi chỉ có một màu: \(C_4^3 + C_5^3 + C_7^3 = 49\)

Số cách chọn được ba viên bi có đủ ba màu: \(C_4^1 + C_5^1 + C_7^1 = 140\)

Vậy xác suất cần tìm là: \({\rm P}\left( A \right) = 1 - \frac{{49 + 140}}{{560}} = \frac{{53}}{{80}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP