Câu hỏi:

03/07/2023 1,276

Tìm x, y, z nguyên dương thỏa mãn: xy + 1 chia hết cho z; yz + 1 chia hết cho x; xz + 1 chia hết cho y.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Theo bài ta có \(\left( {xy + 1} \right)\left( {xz + 1} \right)\left( {yz + 1} \right) \vdots xyz\)

\( \Rightarrow \;\left( {{x^2}{y^2}{z^2} + {x^2}yz + x{y^2}z + xy{z^2} + xy + xz + yz + 1} \right):xyz\)

\( \Rightarrow \left( {xy + xz + yz + 1} \right){\rm{\;}} \vdots xyz\)

Đặt \(xy + xz + yz + 1 = nxyz\) \(\left( {n \in {\mathbb{N}^{\rm{*}}}} \right)\)

Do đó \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{{xyz}} = n\)

Vai trò x, y, z như nhau, không mất tính tổng quát giả sử \(x \ge y \ge z \ge 1\).

Ta có \(\frac{1}{{xyz}} \le \frac{1}{x} \le \frac{1}{y} \le \frac{1}{z} \le 1\). Vậy \(n \le 4\).

Do đó \(n \in \left\{ {1;2;3;4} \right\}\)

Trường hợp 1: Xét \(n = 1\). Ta có \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{{xyz}} = 1\)

Ta có \(1 = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{{xyz}} \le \frac{4}{z} \Rightarrow z \le 4\)

Mà z > 1. Vậy \(z \in \left\{ {2;3;4} \right\}\)

Với z = 2 ta có \(\frac{1}{x} + \frac{1}{y} + \frac{1}{2} + \frac{1}{{2xy}} = 1 \Leftrightarrow \frac{1}{x} + \frac{1}{y} + \frac{1}{{2xy}} = \frac{1}{2}\)

\( \Rightarrow \frac{1}{2} = \frac{1}{x} + \frac{1}{y} + \frac{1}{{2xy}} < \frac{3}{y} \Rightarrow y < 6\)

Mà y > 1 nên \(y \in \left\{ {2;3;4;5} \right\}\).

Xét \(y \in \left\{ {2;3;4;5} \right\}\) được y = 3; x = 7.

Với z = 3 ta có \(\frac{1}{x} + \frac{1}{y} + \frac{1}{{3xy}} = \frac{2}{3}\)

\( \Rightarrow \frac{2}{3} = \frac{1}{x} + \frac{1}{y} + \frac{1}{{3xy}} < \frac{3}{y} \Rightarrow y \le 4\)

Mà \(y \ge z = 3\) nên \(y \in \left\{ {3;4} \right\}\)

Xét \({\rm{y}} \in \left\{ {3;4} \right\}\), ta có \({\rm{x}} \notin \mathbb{Z}\).

Với z = 4 ta có \(\frac{1}{{\rm{x}}} + \frac{1}{{\rm{y}}} + \frac{1}{{4{\rm{xy}}}} = \frac{3}{4}\)

\( \Rightarrow \frac{3}{4} = \frac{1}{x} + \frac{1}{y} + \frac{1}{{4xy}} < \frac{3}{4} \Rightarrow y < 4\)

Trái với \({\rm{y}} \ge {\rm{z}} = 4\).

Trường hợp 2:  Xét n = 2 ta có \(\frac{1}{{\rm{x}}} + \frac{1}{{\rm{y}}} + \frac{1}{{\rm{z}}} + \frac{1}{{{\rm{xyz}}}} = 2\)

Ta có \(2 = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{{xyz}} \le \frac{4}{z} \Rightarrow {\rm{z}} \le 2 \Rightarrow {\rm{z}} \in \left\{ {1;2} \right\}\)

Với z = 1, ta có \(\frac{1}{x} + \frac{1}{y} + \frac{1}{{xy}} = 1\)

\( \Leftrightarrow 1 = \frac{1}{x} + \frac{1}{y} + \frac{1}{{xy}} \le \frac{3}{y} \Rightarrow y \le 3\) mà \(y \in \left\{ {2;3} \right\}\)

+) y = 2 thì x = 3;

+) y = 3 thì \(x \notin Z\)

Với z = 2, ta có \(\frac{1}{x} + \frac{1}{y} + \frac{1}{{2xy}} = \frac{3}{2}\)

\( \Rightarrow \frac{3}{2} = \frac{1}{x} + \frac{1}{y} + \frac{1}{{2xy}} < \frac{3}{y} \Rightarrow y < 2\)

Trái với \({\rm{y}} \ge {\rm{z}} = 2\)

Trường hợp 3: Xét n = 3, ta có \(\frac{1}{{\rm{x}}} + \frac{1}{{\rm{y}}} + \frac{1}{{\rm{z}}} + \frac{1}{{{\rm{xyz}}}} = 3\)

\( \Rightarrow 3 = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{{xyz}} \le \frac{4}{z} \Rightarrow z \le 1 \Rightarrow z = 1\)

Với z = 1, ta có \(\frac{1}{x} + \frac{1}{y} + \frac{1}{{xy}} = 2\)

\( \Rightarrow 2 = \frac{1}{x} + \frac{1}{y} + \frac{1}{{xy}} \le \frac{3}{y} \Rightarrow y \le \frac{3}{2} \Rightarrow y = 1\).

Khi đó x = 2.

Trường hợp 4:  Xét n = 4, ta có \(\frac{1}{{\rm{x}}} + \frac{1}{{\rm{y}}} + \frac{1}{{\rm{z}}} \le \frac{1}{{{\rm{xyz}}}} = 4\)

Dấu '=' xảy ra có x = y = z = 1.

Kết luận: Các bộ số nguyên dương (x, y, z) cần tìm là (7; 3; 2); (3; 2; 1); (2; 1; 1); (1; 1; 1) và các hoán vị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có AM là trung tuyến. Gọi I là trung điểm AM và K là một điểm trên cạnh AC sao cho AK = 1/3 AC. Chứng minh ba điểm B, I, K thẳng hàng.

Xem đáp án » 03/07/2023 3,991

Câu 2:

Cho một hộp đựng 4 viên bi đỏ, 5 viên bi xanh và 7 viên bi vàng. Lấy ngẫu nhiên một lần ba viên bi. Tính xác suất để trong ba viên bi lấy được chỉ có hai màu.

Xem đáp án » 03/07/2023 3,899

Câu 3:

Tính hợp lý: (102 + 112 + 122) : (132 + 142).

Xem đáp án » 03/07/2023 3,214

Câu 4:

Cho định lí “Cho số tự nhiên n, nếu n5 chia hết cho 5 thì n chia hết cho 5”.

Định lí này được viết dưới dạng P Þ Q. Hãy phát biểu định lí đảo của định lí trên rồi dùng các thuật ngữ “điều kiện cần và đủ” phát biểu gộp cả 2 định lí thuận và đảo.

Xem đáp án » 03/07/2023 2,194

Câu 5:

Tìm nghiệm nguyên của phương trình: y2 = x(x + 1)(x + 7)(x + 8).

Xem đáp án » 03/07/2023 1,940

Câu 6:

Tìm giá trị của x để đa thức dư trong mỗi phép chia sau có giá trị bằng 0:

a) (3x5 – x4 – 2x3 + x2 + 4x + 5) : (x2 – 2x + 2);

b) (x5 + 2x4 + 3x2 + x – 3) : (x2 + 1).

Xem đáp án » 03/07/2023 1,931

Câu 7:

Cho đường tròn (O), đường kính BC = 2R, điểm A nằm ngoài đường tròn sao cho tam giác ABC nhọn. Từ A kẻ 2 tiếp tuyến AM, AN với đường tròn (O). Gọi H là trực tâm của tam giác ABC, F là giao điểm của AH và BC. Chứng minh rằng:

a, 5 điểm A, O, M, N, F cùng nằm trên 1 đường tròn.

b, 3 điểm M, N, H thẳng hàng.

c, HA . HF = R2 – OH2.

Xem đáp án » 03/07/2023 1,780

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store