Câu hỏi:

03/07/2023 1,497

Tìm x, y, z nguyên dương thỏa mãn: xy + 1 chia hết cho z; yz + 1 chia hết cho x; xz + 1 chia hết cho y.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Theo bài ta có \(\left( {xy + 1} \right)\left( {xz + 1} \right)\left( {yz + 1} \right) \vdots xyz\)

\( \Rightarrow \;\left( {{x^2}{y^2}{z^2} + {x^2}yz + x{y^2}z + xy{z^2} + xy + xz + yz + 1} \right):xyz\)

\( \Rightarrow \left( {xy + xz + yz + 1} \right){\rm{\;}} \vdots xyz\)

Đặt \(xy + xz + yz + 1 = nxyz\) \(\left( {n \in {\mathbb{N}^{\rm{*}}}} \right)\)

Do đó \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{{xyz}} = n\)

Vai trò x, y, z như nhau, không mất tính tổng quát giả sử \(x \ge y \ge z \ge 1\).

Ta có \(\frac{1}{{xyz}} \le \frac{1}{x} \le \frac{1}{y} \le \frac{1}{z} \le 1\). Vậy \(n \le 4\).

Do đó \(n \in \left\{ {1;2;3;4} \right\}\)

Trường hợp 1: Xét \(n = 1\). Ta có \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{{xyz}} = 1\)

Ta có \(1 = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{{xyz}} \le \frac{4}{z} \Rightarrow z \le 4\)

Mà z > 1. Vậy \(z \in \left\{ {2;3;4} \right\}\)

Với z = 2 ta có \(\frac{1}{x} + \frac{1}{y} + \frac{1}{2} + \frac{1}{{2xy}} = 1 \Leftrightarrow \frac{1}{x} + \frac{1}{y} + \frac{1}{{2xy}} = \frac{1}{2}\)

\( \Rightarrow \frac{1}{2} = \frac{1}{x} + \frac{1}{y} + \frac{1}{{2xy}} < \frac{3}{y} \Rightarrow y < 6\)

Mà y > 1 nên \(y \in \left\{ {2;3;4;5} \right\}\).

Xét \(y \in \left\{ {2;3;4;5} \right\}\) được y = 3; x = 7.

Với z = 3 ta có \(\frac{1}{x} + \frac{1}{y} + \frac{1}{{3xy}} = \frac{2}{3}\)

\( \Rightarrow \frac{2}{3} = \frac{1}{x} + \frac{1}{y} + \frac{1}{{3xy}} < \frac{3}{y} \Rightarrow y \le 4\)

Mà \(y \ge z = 3\) nên \(y \in \left\{ {3;4} \right\}\)

Xét \({\rm{y}} \in \left\{ {3;4} \right\}\), ta có \({\rm{x}} \notin \mathbb{Z}\).

Với z = 4 ta có \(\frac{1}{{\rm{x}}} + \frac{1}{{\rm{y}}} + \frac{1}{{4{\rm{xy}}}} = \frac{3}{4}\)

\( \Rightarrow \frac{3}{4} = \frac{1}{x} + \frac{1}{y} + \frac{1}{{4xy}} < \frac{3}{4} \Rightarrow y < 4\)

Trái với \({\rm{y}} \ge {\rm{z}} = 4\).

Trường hợp 2:  Xét n = 2 ta có \(\frac{1}{{\rm{x}}} + \frac{1}{{\rm{y}}} + \frac{1}{{\rm{z}}} + \frac{1}{{{\rm{xyz}}}} = 2\)

Ta có \(2 = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{{xyz}} \le \frac{4}{z} \Rightarrow {\rm{z}} \le 2 \Rightarrow {\rm{z}} \in \left\{ {1;2} \right\}\)

Với z = 1, ta có \(\frac{1}{x} + \frac{1}{y} + \frac{1}{{xy}} = 1\)

\( \Leftrightarrow 1 = \frac{1}{x} + \frac{1}{y} + \frac{1}{{xy}} \le \frac{3}{y} \Rightarrow y \le 3\) mà \(y \in \left\{ {2;3} \right\}\)

+) y = 2 thì x = 3;

+) y = 3 thì \(x \notin Z\)

Với z = 2, ta có \(\frac{1}{x} + \frac{1}{y} + \frac{1}{{2xy}} = \frac{3}{2}\)

\( \Rightarrow \frac{3}{2} = \frac{1}{x} + \frac{1}{y} + \frac{1}{{2xy}} < \frac{3}{y} \Rightarrow y < 2\)

Trái với \({\rm{y}} \ge {\rm{z}} = 2\)

Trường hợp 3: Xét n = 3, ta có \(\frac{1}{{\rm{x}}} + \frac{1}{{\rm{y}}} + \frac{1}{{\rm{z}}} + \frac{1}{{{\rm{xyz}}}} = 3\)

\( \Rightarrow 3 = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{{xyz}} \le \frac{4}{z} \Rightarrow z \le 1 \Rightarrow z = 1\)

Với z = 1, ta có \(\frac{1}{x} + \frac{1}{y} + \frac{1}{{xy}} = 2\)

\( \Rightarrow 2 = \frac{1}{x} + \frac{1}{y} + \frac{1}{{xy}} \le \frac{3}{y} \Rightarrow y \le \frac{3}{2} \Rightarrow y = 1\).

Khi đó x = 2.

Trường hợp 4:  Xét n = 4, ta có \(\frac{1}{{\rm{x}}} + \frac{1}{{\rm{y}}} + \frac{1}{{\rm{z}}} \le \frac{1}{{{\rm{xyz}}}} = 4\)

Dấu '=' xảy ra có x = y = z = 1.

Kết luận: Các bộ số nguyên dương (x, y, z) cần tìm là (7; 3; 2); (3; 2; 1); (2; 1; 1); (1; 1; 1) và các hoán vị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có AM là trung tuyến. Gọi I là trung điểm AM và K là một điểm trên cạnh AC sao cho AK = 1/3 AC. Chứng minh ba điểm B, I, K thẳng hàng.

Xem đáp án » 03/07/2023 13,191

Câu 2:

Tính hợp lý: (102 + 112 + 122) : (132 + 142).

Xem đáp án » 03/07/2023 4,259

Câu 3:

Cho một hộp đựng 4 viên bi đỏ, 5 viên bi xanh và 7 viên bi vàng. Lấy ngẫu nhiên một lần ba viên bi. Tính xác suất để trong ba viên bi lấy được chỉ có hai màu.

Xem đáp án » 03/07/2023 4,114

Câu 4:

Tìm nghiệm nguyên của phương trình: y2 = x(x + 1)(x + 7)(x + 8).

Xem đáp án » 03/07/2023 2,984

Câu 5:

Cho định lí “Cho số tự nhiên n, nếu n5 chia hết cho 5 thì n chia hết cho 5”.

Định lí này được viết dưới dạng P Þ Q. Hãy phát biểu định lí đảo của định lí trên rồi dùng các thuật ngữ “điều kiện cần và đủ” phát biểu gộp cả 2 định lí thuận và đảo.

Xem đáp án » 03/07/2023 2,272

Câu 6:

Tháng 2 năm nào đó có 5 ngày thứ Năm. Hỏi ngày 1 tháng đó là thứ mấy? Chủ nhật tháng đó vào những ngày nào?

Xem đáp án » 03/07/2023 2,262

Câu 7:

Tìm giá trị của x để đa thức dư trong mỗi phép chia sau có giá trị bằng 0:

a) (3x5 – x4 – 2x3 + x2 + 4x + 5) : (x2 – 2x + 2);

b) (x5 + 2x4 + 3x2 + x – 3) : (x2 + 1).

Xem đáp án » 03/07/2023 2,180

Bình luận


Bình luận