Câu hỏi:

13/07/2024 5,717

Rút gọn biểu thức: \[A = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{2012}}}}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[A = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{2012}}}}\]

\[ \Leftrightarrow 2A = 2 + 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{2011}}}}\]

\[ \Leftrightarrow 2A - A = \left( {2 + 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{2011}}}}} \right) - \left( {1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{2012}}}}} \right)\]

\[ \Leftrightarrow 2A - A = 2 - \frac{1}{{{2^{2012}}}}\]

\[ \Leftrightarrow A = \frac{{{2^{2012}} + 1}}{{{2^{2012}}}}\]

Vậy \[A = \frac{{{2^{2012}} + 1}}{{{2^{2012}}}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: sin x + cos x = m

(sin x + cos x)2 = m2

sin2 x + 2sin x.cos x + cos2x = m2

(sin2 x + cos2 x) + 2sin x.cos x = m2

1 + 2sin x.cos x = m2

\[ \Leftrightarrow \sin x.\cos x = \frac{{{m^2} - 1}}{2}\]

\[ \Rightarrow M = \frac{{{m^2} - 1}}{2}\]

Vậy \[M = \frac{{{m^2} - 1}}{2}\].

Lời giải

A B: tập hợp các học sinh hoặc học lớp 10 hoặc học môn Tiếng Anh của trường em.

A ∩ B: tập hợp các học sinh lớp 10 học môn Tiếng Anh của trường em.

A \ B: tập hợp các học sinh học lớp 10 nhưng không học môn Tiếng Anh của trường em.

B \ A: tập hợp các học sinh học môn Tiếng Anh của trường em nhưng không học lớp 10 của trường em.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP