Câu hỏi:
13/07/2024 18,242
Viết năm số hạng đầu và số hạng thứ 100 của các dãy số (un) có số hạng tổng quát cho bởi:
a) un = 3n – 2;
b) un = 3 . 2n;
c) \({u_n} = {\left( {1 + \frac{1}{n}} \right)^n}\).
Viết năm số hạng đầu và số hạng thứ 100 của các dãy số (un) có số hạng tổng quát cho bởi:
a) un = 3n – 2;
b) un = 3 . 2n;
c) \({u_n} = {\left( {1 + \frac{1}{n}} \right)^n}\).
Câu hỏi trong đề: Giải SGK Toán 11 KNTT Bài 5. Dãy số có đáp án !!
Quảng cáo
Trả lời:
Lời giải:
a) Ta có: u1 = 3 . 1 – 2 = 1;
u2 = 3 . 2 – 2 = 4;
u3 = 3 . 3 – 2 = 7;
u4 = 3 . 4 – 2 = 10;
u5 = 3 . 5 – 2 = 13;
u100 = 3 . 100 – 2 = 298.
b) Ta có: u1 = 3 . 21 = 6;
u2 = 3 . 22 = 12;
u3 = 3 . 23 = 24;
u4 = 3 . 24 = 48;
u5 = 3 . 25 = 96;
u100 = 3 . 2100.
c) Ta có: \({u_1} = {\left( {1 + \frac{1}{1}} \right)^1} = 2\);
\({u_2} = {\left( {1 + \frac{1}{2}} \right)^2} = \frac{9}{4}\);
\({u_3} = {\left( {1 + \frac{1}{3}} \right)^3} = \frac{{64}}{{27}}\);
\({u_4} = {\left( {1 + \frac{1}{4}} \right)^4} = \frac{{625}}{{256}}\);
\({u_5} = {\left( {1 + \frac{1}{5}} \right)^5} = \frac{{7776}}{{3125}}\);
\({u_{100}} = {\left( {1 + \frac{1}{{100}}} \right)^{100}} = {\left( {\frac{{101}}{{100}}} \right)^{100}}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) Ta có: un = n – 1 ≥ 0 với mọi n ∈ ℕ*.
Do đó, dãy số (un) bị chặn dưới với mọi n ∈ ℕ*.
Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:
un = n – 1 ≤ M với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.
b) Ta có: \({u_n} = \frac{{n + 1}}{{n + 2}} = \frac{{n + 2 - 1}}{{n + 2}} = 1 - \frac{1}{{n + 2}}\), với mọi n ∈ ℕ*.
Vì \(0 < \frac{1}{{n + 2}} \le \frac{1}{3}\), ∀ n ∈ ℕ* nên \( - \frac{1}{3} \le - \frac{1}{{n + 2}} < 0\) ∀ n ∈ ℕ*.
Suy ra \(1 - \frac{1}{3} \le 1 - \frac{1}{{n + 2}} < 1\) hay \(\frac{2}{3} \le {u_n} < 1\) ∀ n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
c) Ta có: – 1 ≤ sin n ≤ 1 với mọi n ∈ ℕ*.
Do đó, – 1 ≤ un ≤ 1 với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
d) un = (– 1)n – 1 n2
Ta có: (– 1)n – 1 = 1 với mọi n ∈ ℕ* và n lẻ.
(– 1)n – 1 = – 1 với mọi n ∈ ℕ* và n chẵn.
n2 ≥ 0 với mọi n ∈ ℕ*.
Do đó, un = – n2 < 0, với mọi n ∈ ℕ* và n chẵn.
un = n2 > 0, với mọi n ∈ ℕ* và n lẻ.
Vậy dãy số (un) không bị chặn.
Lời giải
Lời giải:
a) Năm số hạng đầu của dãy số là
u1 = 1;
u2 = 2u1 = 2 . 1 = 2;
u3 = 3u2 = 3 . 2 = 6;
u4 = 4u3 = 4 . 6 = 24;
u5 = 5u4 = 5 . 24 = 120.
b) Nhận xét thấy u1 = 1 = 1!;
u2 = 2 . 1 = 2!;
u3 = 3u2 = 3 . 2 . 1 = 3!;
u4 = 4u3 = 4 . 3 . 2 . 1 = 4!;
u5 = 5u4 = 5 . 4 . 3 . 2 . 1 = 5!;
...
Cứ tiếp tục làm như thế, ta dự đoán được công thức số hạng tổng quát của un là un = n!.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.