Câu hỏi:
13/07/2024 25,384Trong các dãy số (un) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?
a) un = n – 1;
b) \({u_n} = \frac{{n + 1}}{{n + 2}}\);
c) un = sin n;
d) un = (– 1)n – 1 n2.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải:
a) Ta có: un = n – 1 ≥ 0 với mọi n ∈ ℕ*.
Do đó, dãy số (un) bị chặn dưới với mọi n ∈ ℕ*.
Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:
un = n – 1 ≤ M với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.
b) Ta có: \({u_n} = \frac{{n + 1}}{{n + 2}} = \frac{{n + 2 - 1}}{{n + 2}} = 1 - \frac{1}{{n + 2}}\), với mọi n ∈ ℕ*.
Vì \(0 < \frac{1}{{n + 2}} \le \frac{1}{3}\), ∀ n ∈ ℕ* nên \( - \frac{1}{3} \le - \frac{1}{{n + 2}} < 0\) ∀ n ∈ ℕ*.
Suy ra \(1 - \frac{1}{3} \le 1 - \frac{1}{{n + 2}} < 1\) hay \(\frac{2}{3} \le {u_n} < 1\) ∀ n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
c) Ta có: – 1 ≤ sin n ≤ 1 với mọi n ∈ ℕ*.
Do đó, – 1 ≤ un ≤ 1 với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
d) un = (– 1)n – 1 n2
Ta có: (– 1)n – 1 = 1 với mọi n ∈ ℕ* và n lẻ.
(– 1)n – 1 = – 1 với mọi n ∈ ℕ* và n chẵn.
n2 ≥ 0 với mọi n ∈ ℕ*.
Do đó, un = – n2 < 0, với mọi n ∈ ℕ* và n chẵn.
un = n2 > 0, với mọi n ∈ ℕ* và n lẻ.
Vậy dãy số (un) không bị chặn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Dãy số (un) được cho bởi hệ thức truy hồi: u1 = 1, un = n . un – 1 với n ≥ 2.
a) Viết năm số hạng đầu của dãy số.
b) Dự đoán công thức số hạng tổng quát của un.
Câu 2:
Ông An gửi tiết kiệm 100 triệu đồng kì hạn 1 tháng với lãi suất 6% một năm theo hình thức tính lãi kép. Số tiền (triệu đồng) của ông An thu được sau n tháng được cho bởi công thức
\({A_n} = 100{\left( {1 + \frac{{0,06}}{{12}}} \right)^n}\).
a) Tìm số tiền ông An nhận được sau tháng thứ nhất, sau tháng thứ hai.
b) Tìm số tiền ông An nhận được sau 1 năm.
Câu 3:
Viết năm số hạng đầu và số hạng thứ 100 của các dãy số (un) có số hạng tổng quát cho bởi:
a) un = 3n – 2;
b) un = 3 . 2n;
c) \({u_n} = {\left( {1 + \frac{1}{n}} \right)^n}\).
Câu 4:
Viết số hạng tổng quát của dãy số tăng gồm tất cả các số nguyên dương mà mỗi số hạng của nó:
a) Đều chia hết cho 3;
b) Khi chia cho 4 dư 1.
Câu 5:
Chị Hương vay trả góp một khoản tiền 100 triệu đồng và đồng ý trả dần 2 triệu đồng mỗi tháng với lãi suất 0,8% số tiền còn lại của mỗi tháng.
Gọi An (n ∈ ℕ) là số tiền còn nợ (triệu đồng) của chị Hương sau n tháng.
a) Tìm lần lượt A0, A1, A2, A3, A4, A5, A6 để tính số tiền còn nợ của chị Hương sau 6 tháng.
b) Dự đoán hệ thức truy hồi đối với dãy số (An).
Câu 6:
Xét tính tăng, giảm của dãy số (un), biết:
a) un = 2n – 1;
b) un = – 3n + 2;
c) \({u_n} = \frac{{{{\left( { - 1} \right)}^{n - 1}}}}{{{2^n}}}\).
về câu hỏi!