Câu hỏi:
13/07/2024 11,443Chị Hương vay trả góp một khoản tiền 100 triệu đồng và đồng ý trả dần 2 triệu đồng mỗi tháng với lãi suất 0,8% số tiền còn lại của mỗi tháng.
Gọi An (n ∈ ℕ) là số tiền còn nợ (triệu đồng) của chị Hương sau n tháng.
a) Tìm lần lượt A0, A1, A2, A3, A4, A5, A6 để tính số tiền còn nợ của chị Hương sau 6 tháng.
b) Dự đoán hệ thức truy hồi đối với dãy số (An).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải:
a) Ta có: A0 = 100 (triệu đồng)
+) Tiền lãi chị Hương phải trả sau 1 tháng là 100 . 0,8% = 0,8 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 1 tháng là 2 – 0,8 = 1,2 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 1 tháng là
A1 = 100 – 1,2 = 98,8 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 2 tháng là 98,8 . 0,8% = 0,7904 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 2 tháng là 2 – 0,7904 = 1,2096 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 2 tháng là
A2 = 98,8 – 1,2096 = 97,5904 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 3 tháng là 97,5904 . 0,8% = 0,7807232 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 3 tháng là 2 – 0,7807232 = 1,2192768 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 3 tháng là
A3 = 97,5904 – 1,2192768 = 96,3711232 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 4 tháng là 96,3711232 . 0,8% ≈ 0,77097 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 4 tháng là 2 – 0,77097 = 1,22903 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 4 tháng là
A4 = 96,3711232 – 1,22903 = 95,1420932 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 5 tháng là 95,1420932 . 0,8% ≈ 0,76114 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 5 tháng là 2 – 0,76114 = 1,23886 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 5 tháng là
A5 = 95,1420932 – 1,23886 = 93,9032332 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 6 tháng là 93,9032332 . 0,8% ≈ 0,75123 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 6 tháng là 2 – 0,75123 = 1,24877 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 6 tháng là
A6 = 93,9032332 – 1,24877 = 92,6544632 (triệu đồng).
b) Dự đoán hệ thức truy hồi đối với dãy số (An) là
A0 = 100; An = An – 1 – (2 – An – 1. 0,8%) = 1,008An – 1 – 2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong các dãy số (un) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?
a) un = n – 1;
b) \({u_n} = \frac{{n + 1}}{{n + 2}}\);
c) un = sin n;
d) un = (– 1)n – 1 n2.
Câu 2:
Dãy số (un) được cho bởi hệ thức truy hồi: u1 = 1, un = n . un – 1 với n ≥ 2.
a) Viết năm số hạng đầu của dãy số.
b) Dự đoán công thức số hạng tổng quát của un.
Câu 3:
Ông An gửi tiết kiệm 100 triệu đồng kì hạn 1 tháng với lãi suất 6% một năm theo hình thức tính lãi kép. Số tiền (triệu đồng) của ông An thu được sau n tháng được cho bởi công thức
\({A_n} = 100{\left( {1 + \frac{{0,06}}{{12}}} \right)^n}\).
a) Tìm số tiền ông An nhận được sau tháng thứ nhất, sau tháng thứ hai.
b) Tìm số tiền ông An nhận được sau 1 năm.
Câu 4:
Viết năm số hạng đầu và số hạng thứ 100 của các dãy số (un) có số hạng tổng quát cho bởi:
a) un = 3n – 2;
b) un = 3 . 2n;
c) \({u_n} = {\left( {1 + \frac{1}{n}} \right)^n}\).
Câu 5:
Viết số hạng tổng quát của dãy số tăng gồm tất cả các số nguyên dương mà mỗi số hạng của nó:
a) Đều chia hết cho 3;
b) Khi chia cho 4 dư 1.
Câu 6:
Xét tính tăng, giảm của dãy số (un), biết:
a) un = 2n – 1;
b) un = – 3n + 2;
c) \({u_n} = \frac{{{{\left( { - 1} \right)}^{n - 1}}}}{{{2^n}}}\).
về câu hỏi!