Câu hỏi:
13/07/2024 14,567
Chị Hương vay trả góp một khoản tiền 100 triệu đồng và đồng ý trả dần 2 triệu đồng mỗi tháng với lãi suất 0,8% số tiền còn lại của mỗi tháng.
Gọi An (n ∈ ℕ) là số tiền còn nợ (triệu đồng) của chị Hương sau n tháng.
a) Tìm lần lượt A0, A1, A2, A3, A4, A5, A6 để tính số tiền còn nợ của chị Hương sau 6 tháng.
b) Dự đoán hệ thức truy hồi đối với dãy số (An).
Chị Hương vay trả góp một khoản tiền 100 triệu đồng và đồng ý trả dần 2 triệu đồng mỗi tháng với lãi suất 0,8% số tiền còn lại của mỗi tháng.
Gọi An (n ∈ ℕ) là số tiền còn nợ (triệu đồng) của chị Hương sau n tháng.
a) Tìm lần lượt A0, A1, A2, A3, A4, A5, A6 để tính số tiền còn nợ của chị Hương sau 6 tháng.
b) Dự đoán hệ thức truy hồi đối với dãy số (An).
Câu hỏi trong đề: Giải SGK Toán 11 KNTT Bài 5. Dãy số có đáp án !!
Quảng cáo
Trả lời:
Lời giải:
a) Ta có: A0 = 100 (triệu đồng)
+) Tiền lãi chị Hương phải trả sau 1 tháng là 100 . 0,8% = 0,8 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 1 tháng là 2 – 0,8 = 1,2 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 1 tháng là
A1 = 100 – 1,2 = 98,8 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 2 tháng là 98,8 . 0,8% = 0,7904 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 2 tháng là 2 – 0,7904 = 1,2096 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 2 tháng là
A2 = 98,8 – 1,2096 = 97,5904 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 3 tháng là 97,5904 . 0,8% = 0,7807232 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 3 tháng là 2 – 0,7807232 = 1,2192768 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 3 tháng là
A3 = 97,5904 – 1,2192768 = 96,3711232 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 4 tháng là 96,3711232 . 0,8% ≈ 0,77097 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 4 tháng là 2 – 0,77097 = 1,22903 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 4 tháng là
A4 = 96,3711232 – 1,22903 = 95,1420932 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 5 tháng là 95,1420932 . 0,8% ≈ 0,76114 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 5 tháng là 2 – 0,76114 = 1,23886 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 5 tháng là
A5 = 95,1420932 – 1,23886 = 93,9032332 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 6 tháng là 93,9032332 . 0,8% ≈ 0,75123 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 6 tháng là 2 – 0,75123 = 1,24877 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 6 tháng là
A6 = 93,9032332 – 1,24877 = 92,6544632 (triệu đồng).
b) Dự đoán hệ thức truy hồi đối với dãy số (An) là
A0 = 100; An = An – 1 – (2 – An – 1. 0,8%) = 1,008An – 1 – 2.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) Ta có: un = n – 1 ≥ 0 với mọi n ∈ ℕ*.
Do đó, dãy số (un) bị chặn dưới với mọi n ∈ ℕ*.
Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:
un = n – 1 ≤ M với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.
b) Ta có: \({u_n} = \frac{{n + 1}}{{n + 2}} = \frac{{n + 2 - 1}}{{n + 2}} = 1 - \frac{1}{{n + 2}}\), với mọi n ∈ ℕ*.
Vì \(0 < \frac{1}{{n + 2}} \le \frac{1}{3}\), ∀ n ∈ ℕ* nên \( - \frac{1}{3} \le - \frac{1}{{n + 2}} < 0\) ∀ n ∈ ℕ*.
Suy ra \(1 - \frac{1}{3} \le 1 - \frac{1}{{n + 2}} < 1\) hay \(\frac{2}{3} \le {u_n} < 1\) ∀ n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
c) Ta có: – 1 ≤ sin n ≤ 1 với mọi n ∈ ℕ*.
Do đó, – 1 ≤ un ≤ 1 với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
d) un = (– 1)n – 1 n2
Ta có: (– 1)n – 1 = 1 với mọi n ∈ ℕ* và n lẻ.
(– 1)n – 1 = – 1 với mọi n ∈ ℕ* và n chẵn.
n2 ≥ 0 với mọi n ∈ ℕ*.
Do đó, un = – n2 < 0, với mọi n ∈ ℕ* và n chẵn.
un = n2 > 0, với mọi n ∈ ℕ* và n lẻ.
Vậy dãy số (un) không bị chặn.
Lời giải
Lời giải:
a) Năm số hạng đầu của dãy số là
u1 = 1;
u2 = 2u1 = 2 . 1 = 2;
u3 = 3u2 = 3 . 2 = 6;
u4 = 4u3 = 4 . 6 = 24;
u5 = 5u4 = 5 . 24 = 120.
b) Nhận xét thấy u1 = 1 = 1!;
u2 = 2 . 1 = 2!;
u3 = 3u2 = 3 . 2 . 1 = 3!;
u4 = 4u3 = 4 . 3 . 2 . 1 = 4!;
u5 = 5u4 = 5 . 4 . 3 . 2 . 1 = 5!;
...
Cứ tiếp tục làm như thế, ta dự đoán được công thức số hạng tổng quát của un là un = n!.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.