Câu hỏi:

13/07/2024 9,268

Một cấp số cộng có số hạng đầu bằng 5 và công sai bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số cộng này để có tổng bằng 2 700?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Cấp số cộng có u1 = 5 và d = 2. Giả sử tổng của n số hạng đầu bằng 2 700. Khi đó ta có:

Sn = \(\frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] = \frac{n}{2}\left[ {2.5 + \left( {n - 1} \right).2} \right] = 2\,700\).

Do đó, \(\frac{n}{2}\left[ {2.5 + \left( {n - 1} \right).2} \right] = 2\,700\)

n(10 + 2n – 2) = 5 400

n(2n + 8) – 5 400 = 0

2n2 + 8n – 5 400 = 0

\( \Leftrightarrow \left[ \begin{array}{l}n = 50\,\left( {tm} \right)\\n = - 54\,\left( {ktm} \right)\end{array} \right.\)

Vậy tổng của 50 số hạng đầu của cấp số cộng đã cho bằng 2 700.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Giá trị của chiếc xe ô tô trong từng năm lập thành một cấp số cộng với số hạng đầu là u1 = 680 và công sai d = – 55 (do giá xe giảm).

Do đó, giá trị còn lại của chiếc ô tô sau 5 năm sử dụng là

u5 = u1 + (5 – 1)d = 680 + 4 . (– 55) = 460 (triệu đồng).

Lời giải

Lời giải:

Số ghế ở mỗi hàng của hội trường lập thành một cấp số cộng với số hạng đầu u1 = 15 và công sai d = 3. Giả sử cần thiết kế tối thiểu n hàng ghế để hội trường có sức chứa ít nhất 870 ghế ngồi.

Ta có: Sn = \(\frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] = \frac{n}{2}\left[ {2.15 + \left( {n - 1} \right).3} \right] \ge 870\)

Do đó, n(30 + 3n – 3) ≥ 1 740

n(3n + 27) – 17 40 ≥ 0

3n2 + 27n – 1 740 ≥ 0

\( \Leftrightarrow \left[ \begin{array}{l}n \le - 29\\n \ge 20\end{array} \right.\).

Vậy cần thiết kế tối thiểu 20 hàng ghế để thỏa mãn yêu cầu bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP