Câu hỏi:

12/07/2024 12,664

Quãng đường (km) đi từ nhà đến nơi làm việc của 40 công nhân một nhà máy được ghi lại như sau:

5        3        10      20      25      11      13      7        12      31          19      10      12      17

18      11      32      17      16      2        7        9        7        8          3        5        12      15

18      3        12      14      2        9        6        15      15      7          6        12.

a) Ghép nhóm dãy số liệu trên thành các khoảng có độ rộng bằng nhau, khoảng đầu tiên là [0; 5). Tìm giá trị đại diện cho mỗi nhóm.

b) Tính số trung bình của mẫu số liệu không ghép nhóm và mẫu số liệu ghép nhóm. Giá trị nào chính xác hơn?

c) Xác định nhóm chứa mốt của mẫu số liệu ghép nhóm thu được.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Giá trị nhỏ nhất của mẫu số liệu là 2, giá trị lớn nhất của mẫu số liệu là 32, do đó khoảng biến thiên là 32 – 2 = 30.

Các nhóm có độ rộng bằng nhau và độ rộng của mỗi nhóm là 5. Để cho thuận tiện, ta chia thành 7 nhóm là các nhóm [0; 5), [5; 10), [10; 15), [15; 20), [20; 25), [25; 30), [30; 35). Đếm số giá trị thuộc mỗi nhóm, ta có mẫu số liệu ghép nhóm như sau:

Quãng đường (km)

[0; 5)

[5; 10)

[10; 15)

[15; 20)

[20; 25)

[25; 30)

[30; 35)

Số công nhân

5

11

11

9

1

1

2

 

Giá trị đại diện cho mỗi nhóm là trung bình của hai đầu mút của nhóm. Ta có bảng giá trị đại diện như sau:

Quãng đường (km)

(giá trị đại diện)

2,5

7,5

12,5

17,5

22,5

27,5

32,5

Số công nhân

5

11

11

9

1

1

2

b) Số trung bình của mẫu số liệu ghép nhóm là

\(\overline {{x_g}} = \frac{{5.2,5 + 11.7,5 + 11.12,5 + 9.17,5 + 1.22,5 + 1.27,5 + 2.32,5}}{{40}} = 12,625\).

Ta có: 5 + 3 + 10 + 20 + 25 + 11 + 13 + 7 + 12 + 31 + 19 + 10 + 12 + 17 + 18 + 11 + 32 + 17 + 16 + 2 + 7 + 9 + 7 + 8 + 3 + 5 + 12 + 15 + 18 + 3 + 12 + 14 + 2 + 9 + 6 + 15 + 15 + 7 + 6 + 12 = 476.

Số trung bình của mẫu số liệu không ghép nhóm là \(\overline x = \frac{{476}}{{40}} = 11,9\).

Giá trị trung bình của mẫu số liệu không ghép nhóm chính xác hơn vì nó là giá trị của mẫu số liệu gốc.

c) Tần số lớn nhất trong bảng tần số của mẫu số liệu ghép nhóm là 11. Do đó, nhóm chứa mốt của mẫu số liệu ghép nhóm là các nhóm [5; 10) và [10; 15).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) Trong mỗi khoảng thời gian, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:

Thời gian

Số học sinh nam

Số học sinh nữ

4,5

6

4

5,5

10

8

6,5

13

10

7,5

9

11

8,5

7

8

Tổng số các bạn nam là n1 = 6 + 10 + 13 + 9 + 7 = 45.

Thời gian ngủ trung bình của các bạn học sinh nam là

\(\overline {{x_1}} = \frac{{6.4,5 + 10.5,5 + 13.6,5 + 9.7,5 + 7.8,5}}{{45}} \approx 6,52\).

Tổng số các bạn nữ là n2 = 4 + 8 + 10 + 11 + 8 = 41.

Thời gian ngủ trung bình của các bạn học sinh nữ là

\(\overline {{x_2}} = \frac{{4.4,5 + 8.5,5 + 10.6,5 + 11.7,5 + 8.8,5}}{{41}} \approx 6,77\).

Vì 6,52 < 6,77 nên thời gian ngủ trung bình của các học sinh nam ít hơn các học sinh nữ.

b) Ta có:

Thời gian

Số học sinh nam

Số học sinh nữ

Số học sinh khối 11

[4; 5)

6

4

10

[5; 6)

10

8

18

[6; 7)

13

10

23

[7; 8)

9

11

20

[8; 9)

7

8

15

 

Tổng số học sinh khối 11 được khảo sát là n = 45 + 41 = 86.

Gọi x1, x2, x3, ..., x86 là thời gian ngủ của các học sinh khối 11 được khảo sát và giả sử dãy này đã sắp xếp theo thứ tự tăng dần. Khi đó trung vị của mẫu số liệu là \(\frac{{{x_{43}} + {x_{44}}}}{2}\).

Do đó, tứ phân vị thứ nhất Q1 là x22. Vì x22 thuộc nhóm [5; 6) nên nhóm này chứa Q1. Do đó, p = 2; a2 = 5; m2 = 18; m1 = 10; a3 – a2 = 6 – 5 = 1 và ta có

\({Q_1} = 5 + \frac{{\frac{{86}}{4} - 10}}{{18}}.1 \approx 5,64\).

Tứ phân vị thứ nhất Q1 chia mẫu số liệu thành 2 phần, phần dưới chiếm 25% số liệu của mẫu và phần trên chiếm 75% số liệu của mẫu.

Vậy 75% học sinh khối 11 ngủ ít nhất 5,64 giờ.

Lời giải

Lời giải:

Cỡ mẫu là n = 200.

Gọi x1, x2, ..., x200 là tốc độ giao bóng của vận động viên trong 20 lần giao bóng và giả sử dãy này đã được sắp xếp theo thứ tự tăng dần. Khi đó, trung vị là \(\frac{{{x_{100}} + {x_{101}}}}{2}\). Do 2 giá trị x100, x101 thuộc nhóm [165; 170) (vì 18 + 28 + 35 + 43 = 124) nên nhóm này chứa trung vị. Do đó, p = 4; a4 = 165; m4 = 43; m1 + m2 + m3 = 18 + 28 + 35 = 81; a– a4 = 170 – 165 = 5 và ta có

\({M_e} = 165 + \frac{{\frac{{200}}{2} - 81}}{{43}} \cdot 5 \approx 167,21\).
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay