Giải SGK Toán 11 KNTT Bài 9. Các số đặc trưng đo xu thế trung tâm có đáp án
29 người thi tuần này 4.6 542 lượt thi 14 câu hỏi
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Lời giải:
Sau bài học này, ta sẽ giải quyết được bài toán trên như sau:
+) Số trung bình
Trong mỗi khoảng số tiền, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:
Số tiền (nghìn đồng) |
15 |
45 |
75 |
105 |
Số khách hàng |
3 |
15 |
10 |
7 |
Tổng số khách hàng là n = 35. Số tiền bán xăng trung bình của 35 khách hàng là
\(\overline x = \frac{{3.15 + 15.45 + 10.75 + 7.105}}{{35}} = 63\) (nghìn đồng).
Do đó, số trung bình cho mẫu số liệu gốc khoảng 63 nghìn đồng.
+) Số trung vị, tứ phân vị
Cỡ mẫu là n = 35.
Gọi x1, x2, ..., x35 là số tiền xăng của 35 khách hàng và giả sử dãy này đã được sắp xếp theo thứ tự tăng dần. Khi đó, trung vị là x18. Do x18 thuộc nhóm [30; 60) nên nhóm này chứa trung vị. Do đó, p = 2; a2 = 30; m2 = 15; m1 = 3; a3 – a2 = 60 – 30 = 30 và ta có
\({M_e} = 30 + \frac{{\frac{{35}}{2} - 3}}{{15}}.30 = 59\).
Tứ phân vị thứ nhất Q1 là x9. Do x9 thuộc nhóm [30; 60) nên nhóm này chứa Q1. Do đó, p = 2; a2 = 30; m2 = 15; m1 = 3; a3 – a2 = 60 – 30 = 30 và ta có
\({Q_1} = 30 + \frac{{\frac{{35}}{4} - 3}}{{15}}.30 = 41,5\).
Tứ phân vị thứ ba Q3 là x27. Do x27 thuộc nhóm [60; 90) nên nhóm này chứa Q3. Do đó, p = 3; a3 = 60; m3 = 10; m1 + m2 = 3 + 15 = 18; a4 – a3 = 90 – 60 = 30 và ta có
\({Q_3} = 60 + \frac{{\frac{{3.35}}{4} - 18}}{{10}}.30 = 84,75\).
Tứ phân vị thứ hai Q2 = Me = 59.
Do đó, trung vị của mẫu số liệu gốc khoảng 59 và các tứ phân vị khoảng 41,5; 59; 84,75.
+) Mốt
Tần số lớn nhất là 15 nên nhóm chứa mốt là nhóm [30; 60). Ta có, j = 2, a2 = 30, m2 = 15, m1 = 3, m3 = 10, h = 30. Do đó
\({M_o} = 30 + \frac{{15 - 3}}{{\left( {15 - 3} \right) + \left( {15 - 10} \right)}}.30 \approx 51,18\).
Vậy mốt của mẫu số liệu gốc xấp xỉ 51,18.
Lời giải
Lời giải:
a) Giả sử lớp 11A có 30 học sinh và sau khi khảo sát, ta có được bảng thống kê như sau:
Thời gian (giờ) |
Dưới 1,5 giờ |
[1,5; 3) |
[3; 4,5) |
Từ 4,5 giờ trở lên |
Số học sinh |
5 |
15 |
8 |
2 |
b) Ta không thể tính chính xác thời gian tự học trung bình của các học sinh trong lớp vì không có mẫu số liệu cụ thể về thời gian tự học của từng học sinh.
c) Có thể tính gần đúng thời gian tự học trung bình của các học sinh trong lớp dựa trên mẫu số liệu ghép nhóm bằng cách chọn thời gian đại diện cho mỗi nhóm, sau đó sử dụng tần số tương ứng để tính số trung bình, cụ thể:
- Thời gian tự học dưới 1,5 giờ, ta chọn giá trị đại diện là 0,75 giờ, tần số tương ứng là 5.
- Thời gian tự học từ 1,5 đến dưới 3 giờ, ta chọn giá trị đại diện là \(\frac{{1,5 + 3}}{2} = 2,25\), tần số tương ứng là 15.
- Thời gian tự học từ 3 đến dưới 4,5 giờ, ta chọn giá trị đại diện là \(\frac{{3 + 4,5}}{2} = 3,75\), tần số tương ứng là 8.
- Thời gian tự học là từ 4,5 giờ trở lên, ta chọn giá trị đại diện là 5,25, tần số tương ứng là 2.
Số trung bình là \(\overline x = \frac{{5.0,75 + 15.2,25 + 8.3,75 + 2.5,25}}{{30}} = 2,6\).
Vậy thời gian tự học trung bình của học sinh lớp 11A xấp xỉ khoảng 2,6 giờ.
Chú ý: Mỗi bạn có kết quả khảo sát khác nhau phụ thuộc vào số lượng học sinh trong lớp và thời gian tự học của mỗi học sinh trong lớp. Kết quả trên là một ví dụ tham khảo.
Lời giải
Lời giải:
Trong mỗi khoảng thời gian, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:
Thời gian (giờ) |
2,5 |
7,5 |
12,5 |
17,5 |
22,5 |
Số học sinh |
8 |
16 |
4 |
2 |
2 |
Tổng số học sinh là n = 8 + 16 + 4 + 2 + 2 = 32. Thời gian xem ti vi trung bình trong tuần trước của các học sinh là
\(\overline x = \frac{{8.2,5 + 16.7,5 + 4.12,5 + 2.17,5 + 2.22,5}}{{32}} = 8,4375\) (giờ).
Lời giải
Lời giải:
Ta có: cỡ mẫu n = 21, là số lẻ nên trung vị là giá trị chính giữa của mẫu số liệu và là giá trị ở vị trí thứ 11 của mẫu số liệu. Mà x11 thuộc [5; 10) nên trung vị của mẫu số liệu thuộc nhóm [5; 10).
Lời giải
Lời giải:
Cỡ mẫu là n = 200.
Gọi x1, x2, ..., x200 là tốc độ giao bóng của vận động viên trong 20 lần giao bóng và giả sử dãy này đã được sắp xếp theo thứ tự tăng dần. Khi đó, trung vị là \(\frac{{{x_{100}} + {x_{101}}}}{2}\). Do 2 giá trị x100, x101 thuộc nhóm [165; 170) (vì 18 + 28 + 35 + 43 = 124) nên nhóm này chứa trung vị. Do đó, p = 4; a4 = 165; m4 = 43; m1 + m2 + m3 = 18 + 28 + 35 = 81; a5 – a4 = 170 – 165 = 5 và ta có
\({M_e} = 165 + \frac{{\frac{{200}}{2} - 81}}{{43}} \cdot 5 \approx 167,21\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
108 Đánh giá
50%
40%
0%
0%
0%