Câu hỏi:

12/07/2024 5,067

Một cửa hàng đã ghi lại số tiền bán xăng cho 35 khách hàng đi xe máy. Mẫu số liệu gốc có dạng: x1, x2, ..., x35­ trong đó xi là số tiền bán xăng cho khách hàng thứ i. Vì một lí do nào đó, cửa hàng chỉ có mẫu số liệu ghép nhóm dạng sau:

Số tiền (nghìn đồng)

[0; 30)

[30; 60)

[60; 90)

[90; 120)

Số khách hàng

3

15

10

7

Bảng 3.1. Số tiền khách hàng mua xăng

Dựa trên mẫu số liệu ghép nhóm này, làm thế nào để ước lượng các số đặc trưng đo xu thế trung tâm (số trung bình, trung vị, tứ phân vị, mốt) cho mẫu số liệu gốc?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Sau bài học này, ta sẽ giải quyết được bài toán trên như sau:

+) Số trung bình

Trong mỗi khoảng số tiền, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:

Số tiền (nghìn đồng)

15

45

75

105

Số khách hàng

3

15

10

7

 Tổng số khách hàng là n = 35. Số tiền bán xăng trung bình của 35 khách hàng là

\(\overline x = \frac{{3.15 + 15.45 + 10.75 + 7.105}}{{35}} = 63\) (nghìn đồng).

Do đó, số trung bình cho mẫu số liệu gốc khoảng 63 nghìn đồng.

+) Số trung vị, tứ phân vị

Cỡ mẫu là n = 35.

Gọi x1, x2, ..., x35 là số tiền xăng của 35 khách hàng và giả sử dãy này đã được sắp xếp theo thứ tự tăng dần. Khi đó, trung vị là x18. Do x18­ thuộc nhóm [30; 60) nên nhóm này chứa trung vị. Do đó, p = 2; a2 = 30; m2 = 15; m1 = 3; a3 – a2 = 60 – 30 = 30 và ta có

\({M_e} = 30 + \frac{{\frac{{35}}{2} - 3}}{{15}}.30 = 59\).

Tứ phân vị thứ nhất Q1 là x9. Do x9 thuộc nhóm [30; 60) nên nhóm này chứa Q1. Do đó, p = 2; a2 = 30; m2 = 15; m1 = 3; a3 – a2 = 60 – 30 = 30 và ta có

\({Q_1} = 30 + \frac{{\frac{{35}}{4} - 3}}{{15}}.30 = 41,5\).

Tứ phân vị thứ ba Q3 là x27. Do x27 thuộc nhóm [60; 90) nên nhóm này chứa Q3. Do đó, p = 3; a3 = 60; m3 = 10; m1 + m2 = 3 + 15 = 18; a4 – a3 = 90 – 60 = 30 và ta có

\({Q_3} = 60 + \frac{{\frac{{3.35}}{4} - 18}}{{10}}.30 = 84,75\).

Tứ phân vị thứ hai Q2 = Me = 59.

Do đó, trung vị của mẫu số liệu gốc khoảng 59 và các tứ phân vị khoảng 41,5; 59; 84,75.

+) Mốt

Tần số lớn nhất là 15 nên nhóm chứa mốt là nhóm [30; 60). Ta có, j = 2, a2 = 30, m2 = 15, m1 = 3, m3 = 10, h = 30. Do đó

\({M_o} = 30 + \frac{{15 - 3}}{{\left( {15 - 3} \right) + \left( {15 - 10} \right)}}.30 \approx 51,18\).

Vậy mốt của mẫu số liệu gốc xấp xỉ 51,18.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) Trong mỗi khoảng thời gian, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:

Thời gian

Số học sinh nam

Số học sinh nữ

4,5

6

4

5,5

10

8

6,5

13

10

7,5

9

11

8,5

7

8

Tổng số các bạn nam là n1 = 6 + 10 + 13 + 9 + 7 = 45.

Thời gian ngủ trung bình của các bạn học sinh nam là

\(\overline {{x_1}} = \frac{{6.4,5 + 10.5,5 + 13.6,5 + 9.7,5 + 7.8,5}}{{45}} \approx 6,52\).

Tổng số các bạn nữ là n2 = 4 + 8 + 10 + 11 + 8 = 41.

Thời gian ngủ trung bình của các bạn học sinh nữ là

\(\overline {{x_2}} = \frac{{4.4,5 + 8.5,5 + 10.6,5 + 11.7,5 + 8.8,5}}{{41}} \approx 6,77\).

Vì 6,52 < 6,77 nên thời gian ngủ trung bình của các học sinh nam ít hơn các học sinh nữ.

b) Ta có:

Thời gian

Số học sinh nam

Số học sinh nữ

Số học sinh khối 11

[4; 5)

6

4

10

[5; 6)

10

8

18

[6; 7)

13

10

23

[7; 8)

9

11

20

[8; 9)

7

8

15

 

Tổng số học sinh khối 11 được khảo sát là n = 45 + 41 = 86.

Gọi x1, x2, x3, ..., x86 là thời gian ngủ của các học sinh khối 11 được khảo sát và giả sử dãy này đã sắp xếp theo thứ tự tăng dần. Khi đó trung vị của mẫu số liệu là \(\frac{{{x_{43}} + {x_{44}}}}{2}\).

Do đó, tứ phân vị thứ nhất Q1 là x22. Vì x22 thuộc nhóm [5; 6) nên nhóm này chứa Q1. Do đó, p = 2; a2 = 5; m2 = 18; m1 = 10; a3 – a2 = 6 – 5 = 1 và ta có

\({Q_1} = 5 + \frac{{\frac{{86}}{4} - 10}}{{18}}.1 \approx 5,64\).

Tứ phân vị thứ nhất Q1 chia mẫu số liệu thành 2 phần, phần dưới chiếm 25% số liệu của mẫu và phần trên chiếm 75% số liệu của mẫu.

Vậy 75% học sinh khối 11 ngủ ít nhất 5,64 giờ.

Lời giải

Lời giải:

Cỡ mẫu là n = 200.

Gọi x1, x2, ..., x200 là tốc độ giao bóng của vận động viên trong 20 lần giao bóng và giả sử dãy này đã được sắp xếp theo thứ tự tăng dần. Khi đó, trung vị là \(\frac{{{x_{100}} + {x_{101}}}}{2}\). Do 2 giá trị x100, x101 thuộc nhóm [165; 170) (vì 18 + 28 + 35 + 43 = 124) nên nhóm này chứa trung vị. Do đó, p = 4; a4 = 165; m4 = 43; m1 + m2 + m3 = 18 + 28 + 35 = 81; a– a4 = 170 – 165 = 5 và ta có

\({M_e} = 165 + \frac{{\frac{{200}}{2} - 81}}{{43}} \cdot 5 \approx 167,21\).
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay