Câu hỏi:

12/07/2024 1,019

Chứng minh đồ thị ở Hình 2.12 là liên thông. Hãy chỉ ra một đường đi nối đỉnh 1 và đỉnh 6.
Media VietJack

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Đồ thị Hình 2.12 có 7 đỉnh, lấy 2 đỉnh bất kì của đồ thị, ta đều thấy có một đường đi nối hai điểm đó, do đó mọi cặp đỉnh của đồ thị này đều liên thông nên đồ thị này liên thông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh rằng không có đơn đồ thị với 12 đỉnh và 28 cạnh mà các đỉnh đều có bậc 3 hoặc 4.

Xem đáp án » 13/07/2024 1,900

Câu 2:

Vẽ hình biểu diễn của đồ thị G với tập đỉnh V(G) = {1; 2; 3; 4; 5} và tập cạnh

E(G) = {12; 14; 23; 25; 34; 35}.

Đồ thị G có phải là đơn đồ thị không? Có phải là đồ thị đầy đủ không?

Xem đáp án » 13/07/2024 1,825

Câu 3:

Chứng minh rằng một đồ thị đầy đủ có n đỉnh thì có \(\frac{{n\left( {n - 1} \right)}}{2}\) cạnh.

Xem đáp án » 12/07/2024 1,700

Câu 4:

Vẽ các đồ thị đầy đủ có 5 đỉnh, có 6 đỉnh.

Xem đáp án » 12/07/2024 1,656

Câu 5:

Cho đồ thị đầy đủ có 5 đỉnh như Hình 2.9. Tìm những chu trình sơ cấp xuất phát từ đỉnh A và có: độ dài 4; độ dài 5.
Media VietJack

Xem đáp án » 13/07/2024 1,433

Câu 6:

Hãy vẽ một đồ thị có 4 đỉnh và:

a) có đúng hai đỉnh cùng bậc và bậc là 1;

b) có đúng hai đỉnh cùng bậc và bậc là 2.

Xem đáp án » 13/07/2024 1,400

Câu 7:

Trước khi vào một hồi nghị, các đại biểu bắt tay nhau (hai người bắt tay nhau nhiều nhất 1 lần). Có một đại biểu không bắt tay ai hết và thấy rằng có 4 người bắt tay 4 lần, 5 người bắt tay 5 lần và 6 người bắt tay 6 lần. Nếu hội nghị có đúng 16 đại biểu thì ông ta đếm nhầm. Vì sao có thể kết luận như vậy?

Xem đáp án » 13/07/2024 1,053

Bình luận


Bình luận
Vietjack official store