Câu hỏi:

13/07/2024 820

Giải bài toán người đưa thư đối với đồ thị có trọng số trên Hình 2.35.
Media VietJack

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Vì đồ thị Hình 2.35 là liên thông và các đỉnh đều có bậc chẵn (ở đây chỉ có đỉnh A và đỉnh F có bậc là 2, các đỉnh còn lại đều có bậc 4) nên đồ thị này có chu trình Euler.

Một chu trình Euler xuất phát từ đỉnh A là ABCDBEDFECA và tổng độ dài của nó là

3 + 5 + 8 + 6 + 4 + 2 + 3 + 9 + 7 + 4 = 51.

Vậy một chu trình cần tìm là ABCDBEDFECA và có độ dài là 51.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giải bài toán người đưa thư đối với đồ thị có trọng số trên Hình 2.32.

Xem đáp án » 13/07/2024 2,143

Câu 2:

Tìm đường đi ngắn nhất từ A đến D trong đồ thị có trọng số trên Hình 2.33.
Media VietJack

Xem đáp án » 12/07/2024 1,437

Câu 3:

Giải bài toán người đưa thư đối với đồ thị có trọng số trên Hình 2.36.
Media VietJack

Xem đáp án » 11/07/2023 745

Câu 4:

Tìm đường đi ngắn nhất từ đỉnh S đến mỗi đỉnh khác của đồ thị có trọng số trên Hình 2.34.
Media VietJack

Xem đáp án » 13/07/2024 685

Câu 5:

Cho sơ đồ như trên Hình 2.28, ở đó A, B, C, D, E, F là các địa điểm nối với nhau bởi các con đường với độ dài của mỗi con đường được cho như trên hình.

a) Hãy chỉ ra 2 đường đi từ A đến F và so sánh độ dài của hai đường đi đó.

b) Với mỗi đỉnh V của sơ đồ trên Hình 2.28, ta gắn số I(V) là khoảng cách ngắn nhất để đi từ A đến V và gọi là nhãn vĩnh viễn của đỉnh V. Như vậy, ta có ngay I(A) = 0. Dựa vào Hình 2.28, hãy tìm các nhãn vĩnh viễn I(B), I(C) của hai đỉnh kề với A là B, C. 

Media VietJack

Xem đáp án » 12/07/2024 507

Bình luận


Bình luận