Câu hỏi:

13/07/2024 872

Phép dời hình nào có thể biến hình ngôi sao A thành hình ngôi sao B?

Phép dời hình nào có thể biến hình ngôi sao A thành hình ngôi sao B?   (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Phép dời hình nào có thể biến hình ngôi sao A thành hình ngôi sao B?   (ảnh 2)

Gọi E là một điểm bất kì trên hình ngôi sao A và E’ là một điểm trên hình ngôi sao B có vị trí tương ứng với điểm E trên hình ngôi sao A (hình vẽ).

Ta đặt u=EE'.

Lấy điểm F bất kì trên hình ngôi sao A sao cho F ≠ E.

Lấy điểm F’ sao cho FF'=u.

Khi đó điểm F’ là một điểm trên hình ngôi sao B có vị trí tương ứng với điểm F trên hình ngôi sao A.

Tương tự như vậy, với mỗi điểm M bất kì trên hình ngôi sao A, ta lấy điểm M’ sao cho MM'=u thì từ hình ngôi sao A là tập hợp điểm M, ta được tập hợp các điểm M’ tạo thành hình ngôi sao B.

Vậy phép dời hình cần tìm là phép biến hình biến mỗi điểm M bất kì thành điểm M’ sao cho MM'=u.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hai điểm B, C cố định trên đường tròn (O; R) và một điểm A thay đổi trên đường tròn đó. Chứng minh trực tâm H của tam giác ABC luôn nằm trên một đường tròn cố định. (ảnh 1)

Kẻ đường kính BB’.

Do B, C cố định trên (O) nên B’, C cũng cố định trên (O).

Suy ra B'C là vectơ không đổi.

Ta có BCB'^=90° (góc nội tiếp chắn nửa đường tròn (O)).

Suy ra BC ⊥ B’C.

Mà AH ⊥ BC (do H là trực tâm của ∆ABC).

Do đó AH // B’C    (1)

Chứng minh tương tự, ta được AB’ // CH    (2)

 Từ (1), (2), suy ra tứ giác AHCB’ là hình bình hành.

Suy ra AH = B’C.

Mà AH // B’C (chứng minh trên).

Vì vậy AH=B'C.

Do đó H=TB'CA.

Vậy khi A thay đổi trên đường tròn (O) thì trực tâm H của tam giác ABC luôn nằm trên ảnh của đường tròn (O) là đường tròn (O’) qua TB'C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP