Câu hỏi:

13/07/2024 536

Cho vectơ u và đường thẳng d. A và M là hai điểm bất kì trên d. Gọi A’ và M’ lần lượt là ảnh của A và M qua phép tịnh tiến Tu.

a) Hai vectơ A'M',  AM có bằng nhau không?

b) Khi điểm M thay đổi trên d thì điểm M’ thay đổi như thế nào? Giải thích.

Cho vectơ u  và đường thẳng d. A và M là hai điểm bất kì trên d. Gọi A’ và M’ lần lượt là ảnh của A và M qua phép tịnh tiến (ảnh 1)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có TuA=A', suy ra AA'=u.

              TuM=M', suy ra MM'=u.

Khi đó AA'=MM'   =u.

Suy ra AA’ = MM’ và AA’ // MM’.

Vì vậy tứ giác AMM’A’ là hình bình hành.

Vậy A'M'=AM.

b) Gọi d’ là giá của A'M'.

Vì A’M’ // AM (do tứ giác AMM’A’ là hình bình hành).

Nên d’ // d.

Vậy khi điểm M thay đổi trên d thì điểm M’ thay đổi trên d’ thỏa mãn MM'=u.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai điểm B, C cố định trên đường tròn (O; R) và một điểm A thay đổi trên đường tròn đó. Chứng minh trực tâm H của tam giác ABC luôn nằm trên một đường tròn cố định.

Xem đáp án » 13/07/2024 2,280

Câu 2:

Cho phép tịnh tiến Tu trong đó u=3;5.

a) Tìm ảnh của các điểm A(–3; 4), B(2; –7) qua Tu.

b) Biết rằng M’(2; 6) là ảnh của điểm M qua Tu. Tìm tọa độ của điểm M.

c) Tìm ảnh của đường thẳng d: 4x – 3y + 7 = 0 qua Tu.

Xem đáp án » 13/07/2024 2,036

Câu 3:

Trong mặt phẳng tọa độ Oxy, xét phép tịnh tiến Tv với v=3;2.

a) Biết ảnh của điểm M qua Tv là điểm M’(–8; 5). Tìm tọa độ điểm M.

b) Tìm ảnh của đường tròn (C): (x – 2)2 + (y + 3)2 = 4 qua Tv.

Xem đáp án » 13/07/2024 1,549

Câu 4:

Cho phép tịnh tiến Tu và phép tịnh tiến Tv. Với điểm M bất kì, Tu biến M thành M’, Tv biến M’ thành M’’. Hỏi có phép tịnh tiến nào biến điểm M thành M’’ không?

Xem đáp án » 13/07/2024 1,378

Câu 5:

Cho đường tròn (O) và hai điểm A, B. Khi điểm M thay đổi trên đường tròn (O) thì điểm M’ thay đổi trên đường nào để MM'+MA=MB?

Xem đáp án » 13/07/2024 1,218

Câu 6:

Chứng minh phép đồng nhất là một phép tịnh tiến.

Xem đáp án » 13/07/2024 1,026

Câu 7:

Trong Hình 9, tìm các vectơ u và v sao cho phép tịnh tiến Tu biến hình mũi tên (A) thành hình mũi tên (B) và phép tịnh tiến Tv biến hình mũi tên (A) thành hình mũi tên (C).

Trong Hình 9, tìm các vectơ   và   sao cho phép tịnh tiến   biến hình mũi tên (A) thành hình mũi tên (B) và phép tịnh tiến   biến hình mũi tên (A) thành hình mũi tên (C).   (ảnh 1)

Xem đáp án » 13/07/2024 699

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store