Câu hỏi:
12/07/2024 3,619
Cho đồ thị có trọng số như Hình 6.
a) Tìm tất cả các đường đi từ A đến T (đi qua mỗi đỉnh nhiều nhất một lần) và tính độ dài của mỗi đường đi đó.
b) Từ đó, tìm đường đi ngắn nhất từ A đến T.
Cho đồ thị có trọng số như Hình 6.

a) Tìm tất cả các đường đi từ A đến T (đi qua mỗi đỉnh nhiều nhất một lần) và tính độ dài của mỗi đường đi đó.
b) Từ đó, tìm đường đi ngắn nhất từ A đến T.
Quảng cáo
Trả lời:
a) Tất cả các đường đi từ A đến T (đi qua mỗi đỉnh nhiều nhất một lần) là: ABDT, ACDT, ACET, ACDET, ACEDT, ABDET, ABDCET.
Ta có:
⦁ lABDT = wAB + wBD + wDT = 4 + 7 + 3 = 14;
⦁ lACDT = wAC + wCD + wDT = 2 + 6 + 3 = 11;
⦁ lACET = wAC + wCE + wET = 2 + 12 + 5 = 19;
⦁ lACDET = wAC + wCD + wDE + wET = 2 + 6 + 4 + 5 = 17;
⦁ lACEDT = wAC + wCE + wED + wDT = 2 + 12 + 4 + 3 = 21;
⦁ lABDET = wAB + wBD + wDE + wET = 4 + 7 + 4 + 5 = 20;
⦁ lABDCET = wAB + wBD + wDC + wCE + wET = 4 + 7 + 6 + 12 + 5 = 34.
b) Vì 11 < 14 < 17 < 19 < 20 < 21 < 34.
Nên lACDT < lABDT < lACDET < lACET < lABDET < lACEDT < lABDCET.
Vậy đường đi ngắn nhất từ A đến T là ACDT (có độ dài bằng 11).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

– Gán nhãn cho A bằng 0 (tức là, nA = 0), các đỉnh khác bằng ∞. Khoanh tròn đỉnh A.
– Tại các đỉnh kề với A, gồm B, C, D, ta có:
⦁ nB = nA + wAB = 0 + 3 = 3. Vì 3 < ∞ nên ta đổi nhãn của B thành 3.
⦁ nC = nA + wAC = 0 + 6 = 6. Vì 6 < ∞ nên ta đổi nhãn của C thành 6.
⦁ nD = nA + wAD = 0 + 5 = 5. Vì 5 < ∞ nên ta đổi nhãn của D thành 5.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là B nên ta khoanh tròn đỉnh B (đỉnh gần đỉnh A nhất, chỉ tính các đỉnh khác đỉnh A).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh B gồm C, E, ta có:
⦁ nC = nB + wBC = 3 + 2 = 5. Vì 5 < 6 (6 là nhãn hiện tại của C) nên ta đổi nhãn của C thành 5.
⦁ nE = nB + wBE = 3 + 10 = 13. Vì 13 < ∞ nên ta đổi nhãn của E thành 13.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là C, D (đều có nhãn là 5) nên ta tùy ý khoanh tròn đỉnh C (đỉnh gần đỉnh A thứ hai).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh C gồm E, D, F, I, ta có:
⦁ nE = nC + wCE = 5 + 5 = 10. Vì 10 < 13 (13 là nhãn hiện tại của E) nên ta đổi nhãn của E thành 10.
⦁ nD = nC + wCD = 5 + 3 = 8. Vì 8 > 5 (5 là nhãn hiện tại của D) nên ta giữ nguyên nhãn của D là 5.
⦁ nF = nC + wCF = 5 + 6 = 11. Vì 11 < ∞ nên ta đổi nhãn của F thành 11.
⦁ nI = nC + wCI = 5 + 8 = 13. Vì 13 < ∞ nên ta đổi nhãn của I thành 13.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là D nên ta khoanh tròn đỉnh D (đỉnh gần đỉnh A thứ ba).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh D chỉ có đỉnh F, ta có:
nF = nD + wDF = 5 + 7 = 12.
Vì 12 > 11 (11 là nhãn hiện tại của F) nên ta giữ nguyên nhãn của F là 11.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là E nên ta khoanh tròn đỉnh E (đỉnh gần đỉnh A thứ tư).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh E chỉ có đỉnh I, ta có:
nI = nE + wEI = 10 + 2 = 12.
Vì 12 < 13 (13 là nhãn hiện tại của I) nên ta đổi nhãn của I thành 12.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là F nên ta khoanh tròn đỉnh F (đỉnh gần A thứ năm).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh F chỉ còn đỉnh I, ta có:
nI = nF + wFI = 11 + 4 = 15.
Vì 15 > 12 (12 là nhãn hiện tại của I) nên ta giữ nguyên nhãn của I là 12.
Lúc này, ta thấy chỉ còn đỉnh I chưa được khoanh tròn nên ta khoanh tròn đỉnh I (đỉnh gần A thứ sáu).
– Nhìn ngược lại các bước trên, ta thấy:
nI = 12 = nE + wEI
= nC + wCE + wEI
= nB + wBC + wCE + wEI
= nA + wAB + wBC + wCE + wEI
= wAB + wBC + wCE + wEI
= lABCEI.
Vậy ABCEI là đường đi ngắn nhất từ A đến I, với độ dài bằng 12.
Lời giải

– Gán nhãn cho A bằng 0 (tức là, nA = 0), các đỉnh khác bằng ∞. Khoanh tròn đỉnh A.
– Tại các đỉnh kề với đỉnh A, gồm M, N, B, ta có:
⦁ nM = nA + wAM = 0 + 9 = 9. Vì 9 < ∞ nên ta đổi nhãn của M thành 9.
⦁ nN = nA + wAN = 0 + 5 = 5. Vì 5 < ∞ nên ta đổi nhãn của N thành 5.
⦁ nB = nA + wAB = 0 + 3 = 3. Vì 3 < ∞ nên ta đổi nhãn của B thành 3.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là B nên ta khoanh tròn đỉnh B (đỉnh gần A nhất, chỉ tính các đỉnh khác A).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh B gồm M, N, ta có:
⦁ nM = nB + wBM = 3 + 4 = 7. Vì 7 < 9 (9 là nhãn hiện tại của M) nên ta đổi nhãn của M thành 7.
⦁ nN = nB + wBN = 3 + 10 = 13. Vì 13 > 5 (5 là nhãn hiện tại của N) nên ta giữ nguyên nhãn của N là 5.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là N nên ta khoanh tròn đỉnh N (đỉnh gần A thứ hai).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh N gồm M, C, P, ta có:
⦁ nM = nN + wNM = 5 + 2 = 7. Vì 7 cũng là nhãn hiện tại của M nên ta giữ nguyên nhãn của M là 7.
⦁ nC = nN + wNC = 5 + 6 = 11. Vì 11 < ∞ nên ta đổi nhãn của C thành 11.
⦁ nP = nN + wNP = 5 + 12 = 17. Vì 17 < ∞ nên ta đổi nhãn của P thành 17.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là M nên ta khoanh tròn đỉnh M (đỉnh gần A thứ ba).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh M gồm D, P, ta có:
⦁ nD = nM + wMD = 7 + 10 = 17. Vì 17 < ∞ nên ta đổi nhãn của D thành 17.
⦁ nP = nM + wMP = 7 + 11 = 18. Vì 18 > 17 (17 là nhãn hiện tại của P) nên ta giữ nguyên nhãn của P là 17.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là C nên ta khoanh tròn đỉnh C (đỉnh gần A thứ tư).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh C chỉ có đỉnh P, ta có:
nP = nC + wCP = 11 + 5 = 16. Vì 16 < 17 (17 là nhãn hiện tại của P) nên ta đổi nhãn của P thành 16.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là đỉnh P nên ta khoanh tròn đỉnh P (đỉnh gần A thứ năm).
– Nhìn lại các bước trên, ta thấy:
nP = 16 = nC + wCP
= nN + wNC + wCP
= nA + wAN + wNC + wCP
= wAN + wNC + wCP
= lANCP.
Vậy ANCP là đường đi ngắn nhất từ đỉnh A đến P, với độ dài bằng 16.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.