Cho a, b là hai đường thẳng phân biệt cắt ba mặt phẳng song song (P), (Q), (R) lần lượt tại các điểm A, B, C và A', B', C'. Khẳng định nào sau đây là sai?
A. .
B. .
C. .
D. .
Cho a, b là hai đường thẳng phân biệt cắt ba mặt phẳng song song (P), (Q), (R) lần lượt tại các điểm A, B, C và A', B', C'. Khẳng định nào sau đây là sai?
A. .
B. .
C. .
D. .
Quảng cáo
Trả lời:
Đáp án đúng là: D

Theo định lí Thalès trong không gian, ta có: . (đáp án A đúng)
Suy ra . (đáp án B đúng)
Từ suy ra. (đáp án C đúng)
Vậy đáp án D sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Theo hệ quả của định lí về tính chất của hai mặt phẳng song song: Nếu đường thẳng a song song với mặt phẳng (P) thì có duy nhất một mặt phẳng chứa a và song song với (P).
Lời giải

Gọi E là trung điểm của AD và I là giao điểm của NP và EC.
Ta có nên NP // AD.
Do AD // BC (ABCD là hình thang có AD là đáy) nên NP // BC.
Mà BC ⊂ (SBC). Suy ra NP // (SBC). (1)
Vì NP // AD nên ta có .
Do M là trọng tâm của tam giác SAD và E trung điểm của đoạn AD nên M ∈ SE và .
Như vậy nên MI // SC.
Mà SC ⊂ (SBC). Suy ra MI // (SBC). (2)
Lại có MI và NP là hai đường thẳng cắt nhau tại I trong mặt phẳng (MNP). (3)
Từ (1), (2) và (3) suy ra (MNP) // (SBC).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.