Câu hỏi:

13/07/2024 2,937

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của BC, B'C'. Khẳng định nào sau đây là đúng?

A. (A'MN) // (ACC').

B. (A'BN) // (AC'M).

C. C'M // (A'B'B).

D. BN // (ACC'A').

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của BC, B'C'. Khẳng định nào sau đây là đúng?  A. (A'MN) // (ACC').  B. (A'BN) // (AC'M).  C. C'M // (A'B'B).  D. BN // (ACC'A').  (ảnh 1)

+ Vì A, C, C', A' đồng phẳng nên A' (ACC'), mà A' (A'MN) nên hai mặt phẳng (A'MN) và (ACC') không thể song song. Do đó đáp án A sai.

+ Trong mặt phẳng (BCC'B'), hai đường thẳng C'M và BB' cắt nhau nên C'M không thể song song với mặt phẳng (A'B'B). Do đó đáp án C sai.

+ Trong hình bình hành BCC'B' có M, N lần lượt là trung điểm của BC, B'C' nên ta chứng minh được MN // BB' và MN = BB'.

Mà AA' // BB' và AA' = BB' nên MN // AA' và MN = AA'.

Suy ra AMNA' là hình bình hành, do đó AM // A'N.

Mà A'N (A'BN) nên AM // (A'BN). (1)

Ta cũng chứng minh được BMC'N là hình bình hành nên C'M // BN.

Mà BN (A'BN) nên C'M // (A'BN). (2)

Từ (1) và (2) suy ra (A'BN) // (AC'M). Vậy đáp án B đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G, I, K lần lượt là trọng tâm các tam giác ABC, A'B'C', A'B'B.  a) Chứng minh rằng IK // (BCC'B').  b) Chứng minh rằng (AGK) // (A'IC).  c) Gọi (α) là mặt phẳng đi qua điểm K và song song với mặt phẳng (ABC). Mặt phẳng (α) cắt A'C tại điểm L. Tính  . (ảnh 1)

a) Gọi M, N lần lượt là trung điểm của cạnh B'C', BB'.

Do I, K lần lượt là trọng tâm của các tam giác A'B'C' và A'B'B nên A'IA'M=A'KA'N=23.

Suy ra IK // MN. Mà MN ⊂ (BCC'B') nên IK // (BCC'B').

b) Gọi P là trung điểm của cạnh BC.

Khi đó, mặt phẳng (AGK) cũng là mặt phẳng (AB'P), mặt phẳng (A'IC) cũng là mặt phẳng (A'MC). 

Ta có B'P // MC (B'MCP là hình bình hành) nên B'P // (A'MC)

AP // A'M (APMA' là hình bình hành) nên AP // (A'MC).

Từ đó, suy ra (AB'P) // (A'MC) hay (AGK) // (A'IC).

c) Với K là trọng tâm của tam giác A'BB', ta suy ra B'KB'A=13 nên B'KKA=12.

Ta có đường thẳng B'A cắt ba mặt phẳng song song (A'B'C'), (α), (ABC) lần lượt tại B', K, A; đường thẳng A'C cũng cắt ba mặt phẳng trên theo thứ tự tại A', L, C.

Áp dụng định lí Thalés trong không gian, ta có: B'KA'L=KALC=AB'CA'.

Suy ra A'LLC=B'KKA=12.

Vậy LA'LC=12.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay