Câu hỏi:

12/07/2024 162

Hệ phương trình \(\left\{ \begin{array}{l}{x^2} + \sqrt x = 2y\\{y^2} + \sqrt y = 2x\end{array} \right.\) có bao nhiêu cặp nghiệm (x; y) ¹ (0; 0)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Điều kiện: x, y ³ 0. Trừ hai phương trình của hệ cho nhau ta thu được:

\(\left( {{x^2} + \sqrt x } \right) - \left( {{y^2} + \sqrt y } \right) = 2y - 2x\)

\( \Leftrightarrow \left( {\sqrt x - \sqrt y } \right)\left[ {\left( {\sqrt x + \sqrt y } \right)\left( {x + y} \right) + 1 + 2\left( {\sqrt x + \sqrt y } \right)} \right] = 0\)

Vì \(\left( {\sqrt x + \sqrt y } \right)\left( {x + y} \right) + 1 + 2\left( {\sqrt x + \sqrt y } \right) > 0\) nên phương trình đã cho tương đương với: x = y.

Thay x = y vào phương trình \({x^2} + \sqrt x = 2y\) ta được \({x^2} + \sqrt x = 2x\)

\( \Leftrightarrow {x^2} - 2x + \sqrt x = 0\).

Xem phương trình trên là phương trình bậc 5 ẩn là \(\sqrt x \) suy ra

\[\left[ \begin{array}{l}\sqrt x = 0 \Rightarrow x = y = 0\\\sqrt x = 1 \Rightarrow x = y = 1\\\sqrt x = \frac{{\sqrt 5 - 1}}{2} \Rightarrow x = y = \frac{{3 - \sqrt 5 }}{2}\\\sqrt x = \frac{{ - \sqrt 5 - 1}}{2}\;\;\;\left( L \right)\end{array} \right.\]

Vậy hệ có 3 cặp nghiệm: \(\left( {x;\;y} \right) \in \left\{ {\left( {0;\;0} \right),\;\left( {1;\;1} \right),\;\left( {\frac{{3 - \sqrt 5 }}{2};\;\frac{{3 - \sqrt 5 }}{2}} \right)} \right\}\).

Suy ra có hai cặp nghiệm thỏa mãn đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Gọi ba số viết ra là a, b, c không gian mẫu n (W) = 173

Phân đoạn [1; 17] thành ba tập:

X = {3; 6; 9; 12; 15} chia hết cho 3 có 5 phần tử

Y = {1; 4; 7; 10; 13; 16} chia cho 3 dư 1 có 6 phần tử

Z = {2; 5; 8; 11; 14; 17} chia cho 3 dư 2 có 6 phần tử

TH1: Cả ba số cùng thuộc 1 trong 3 tập có số cách viết là: 63 + 53 + 63.

TH2: Ba số thuộc 3 tập khác nhau, số cách viết là 3!.6.5.6.

Xác suất là: \(P\left( A \right) = \frac{{{6^3} + {5^3} + {5^3} + 3!\,\,.\,\,6\,\,.\,\,5\,\,.\,\,6}}{{{{17}^3}}} = \frac{{1\,\,637}}{{4\,\,913}}\).

Lời giải

Lời giải

Số tự nhiên thỏa mãn có dạng \[\overline {abcde} \] với a, b, c, d, e Î A và đôi một khác nhau.

Số cách chọn 2 vị trí cho hai chữ số 1 và 5 từ 5 vị trí có sắp thứ tự là: \[A_5^2 = 20\].

Sắp 4 chữ số vào 3 vị trí còn lại có \[A_4^3 = 24\] (cách).

Vậy có 20 . 24 = 480 (số).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP