Câu hỏi:
12/07/2024 397
Hệ phương trình \(\left\{ \begin{array}{l}{x^2} + \sqrt x = 2y\\{y^2} + \sqrt y = 2x\end{array} \right.\) có bao nhiêu cặp nghiệm (x; y) ¹ (0; 0)?
Quảng cáo
Trả lời:
Lời giải
Điều kiện: x, y ³ 0. Trừ hai phương trình của hệ cho nhau ta thu được:
\(\left( {{x^2} + \sqrt x } \right) - \left( {{y^2} + \sqrt y } \right) = 2y - 2x\)
\( \Leftrightarrow \left( {\sqrt x - \sqrt y } \right)\left[ {\left( {\sqrt x + \sqrt y } \right)\left( {x + y} \right) + 1 + 2\left( {\sqrt x + \sqrt y } \right)} \right] = 0\)
Vì \(\left( {\sqrt x + \sqrt y } \right)\left( {x + y} \right) + 1 + 2\left( {\sqrt x + \sqrt y } \right) > 0\) nên phương trình đã cho tương đương với: x = y.
Thay x = y vào phương trình \({x^2} + \sqrt x = 2y\) ta được \({x^2} + \sqrt x = 2x\)
\( \Leftrightarrow {x^2} - 2x + \sqrt x = 0\)
Xem phương trình trên là phương trình bậc 5 ẩn là \(\sqrt x \) suy ra
\[\left[ \begin{array}{l}\sqrt x = 0 \Rightarrow x = y = 0\\\sqrt x = 1 \Rightarrow x = y = 1\\\sqrt x = \frac{{\sqrt 5 - 1}}{2} \Rightarrow x = y = \frac{{3 - \sqrt 5 }}{2}\\\sqrt x = \frac{{ - \sqrt 5 - 1}}{2}\;\;\;\left( L \right)\end{array} \right.\]
Vậy hệ có 3 cặp nghiệm: \(\left( {x;\;y} \right) \in \left\{ {\left( {0;\;0} \right),\;\left( {1;\;1} \right),\;\left( {\frac{{3 - \sqrt 5 }}{2};\;\frac{{3 - \sqrt 5 }}{2}} \right)} \right\}\).
Suy ra có hai cặp nghiệm thỏa mãn đề bài.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Gọi ba số viết ra là a, b, c không gian mẫu n (W) = 173
Phân đoạn [1; 17] thành ba tập:
X = {3; 6; 9; 12; 15} chia hết cho 3 có 5 phần tử
Y = {1; 4; 7; 10; 13; 16} chia cho 3 dư 1 có 6 phần tử
Z = {2; 5; 8; 11; 14; 17} chia cho 3 dư 2 có 6 phần tử
• TH1: Cả ba số cùng thuộc 1 trong 3 tập có số cách viết là: 63 + 53 + 63.
• TH2: Ba số thuộc 3 tập khác nhau, số cách viết là 3!.6.5.6.
Xác suất là: \(P\left( A \right) = \frac{{{6^3} + {5^3} + {5^3} + 3!\,\,.\,\,6\,\,.\,\,5\,\,.\,\,6}}{{{{17}^3}}} = \frac{{1\,\,637}}{{4\,\,913}}\).
Lời giải
Lời giải
Số tự nhiên thỏa mãn có dạng \[\overline {abcde} \] với a, b, c, d, e Î A và đôi một khác nhau.
Số cách chọn 2 vị trí cho hai chữ số 1 và 5 từ 5 vị trí có sắp thứ tự là: \[A_5^2 = 20\].
Sắp 4 chữ số vào 3 vị trí còn lại có \[A_4^3 = 24\] (cách).
Vậy có 20 . 24 = 480 (số).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.