Câu hỏi:

11/07/2024 394

Cho 2 số thực x, y thỏa mãn \[\left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = 1\]. Tìm giá trị nhỏ nhất của biểu thức M = 10x4 + 8y4 − 15xy + 6x2 +5y2 + 2017.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có: \[\left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = 1\]

\( \Leftrightarrow \left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = \left( {x + \sqrt {{x^2} + 1} } \right)\left( {\sqrt {{x^2} + 1} - x} \right)\)

\( \Rightarrow y + \sqrt {{y^2} + 1} = \sqrt {{x^2} + 1} - x\)

\( \Leftrightarrow x + y = \sqrt {{x^2} + 1} - \sqrt {{y^2} + 1} \) (1)

Tương tự, ta có:

\( \Leftrightarrow \left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = \left( {y + \sqrt {{y^2} + 1} } \right)\left( {\sqrt {{y^2} + 1} - y} \right)\)

\[ \Rightarrow x + \sqrt {{x^2} + 1} = \sqrt {{y^2} + 1} - y\]

\[ \Leftrightarrow x + y = \sqrt {{y^2} + 1} - \sqrt {{x^2} + 1} \] (2)

Cộng vế với vế của (1) và (2) thì x + y = 0

Þ y = −x

Thay vào biểu thức M ta được:

M = 10x4 + 8(−x)4 − 15x(−x) + 6x2 +5(−x)2 + 2017

= 18x4 + 26x2 + 2017 ³ 2017

Dấu nằng xảy ra khi x = 0 Þ y = 0

Vậy giá trị nhỏ nhất của biểu thức M là 2017 khi x = y = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Gọi ba số viết ra là a, b, c không gian mẫu n (W) = 173

Phân đoạn [1; 17] thành ba tập:

X = {3; 6; 9; 12; 15} chia hết cho 3 có 5 phần tử

Y = {1; 4; 7; 10; 13; 16} chia cho 3 dư 1 có 6 phần tử

Z = {2; 5; 8; 11; 14; 17} chia cho 3 dư 2 có 6 phần tử

TH1: Cả ba số cùng thuộc 1 trong 3 tập có số cách viết là: 63 + 53 + 63.

TH2: Ba số thuộc 3 tập khác nhau, số cách viết là 3!.6.5.6.

Xác suất là: \(P\left( A \right) = \frac{{{6^3} + {5^3} + {5^3} + 3!\,\,.\,\,6\,\,.\,\,5\,\,.\,\,6}}{{{{17}^3}}} = \frac{{1\,\,637}}{{4\,\,913}}\).

Lời giải

Lời giải

Số tự nhiên thỏa mãn có dạng \[\overline {abcde} \] với a, b, c, d, e Î A và đôi một khác nhau.

Số cách chọn 2 vị trí cho hai chữ số 1 và 5 từ 5 vị trí có sắp thứ tự là: \[A_5^2 = 20\].

Sắp 4 chữ số vào 3 vị trí còn lại có \[A_4^3 = 24\] (cách).

Vậy có 20 . 24 = 480 (số).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP