Câu hỏi:
25/07/2023 124Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Bổ đề: Với a, b > 0 thì a3 + b3 ³ ab(a + b)
BĐT này đúng vì tương đương với (a − b)2(a + b) ³ 0
Do đó, thực hiện tương tự với bộ (b3, c3); (c3, a3) ta có:
2(a3 + b3 + c3) ³ ab(a + b) + bc(b + c) + ca(c + a) (1)
Ta có: (a + b + c)(a2 + b2 + c2) = a3 + b3 + c3 + ab(a + b) + bc(b + c) + ca(c + a) (2)
Từ (1) và (2) suy ra
(a + b + c)(a2 + b2 + c2) £ a3 + b3 + c3 + 2(a3 + b3 + c3) = 3(a3 + b3 + c3)
Vì a + b + c = 1 nên điều trên tương đương với
a2 + b2 + c2 £ 3(a3 + b3 + c3)
Dấu bằng xảy ra khi \(a = b = c = \frac{1}{3}\)
Vậy a2 + b2 + c2 £ 3(a3 + b3 + c3) (đpcm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Cho hai số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\;\left( {b > 0,\;d > 0} \right)\). Chứng tỏ rằng:
a) Nếu \[\frac{a}{b} < \frac{c}{d}\] thì ad < bc.
b) Nếu ad < bc thì \[\frac{a}{b} < \frac{c}{d}\].
Câu 6:
Câu 7:
về câu hỏi!