Câu hỏi:
25/07/2023 209Cho a, b, c > 0 thỏa mãn: a + b + c = 1. Chứng minh rằng:
\(\sqrt {5a + 1} + \sqrt {5b + 1} + \sqrt {5c + 1} \le 2\sqrt 6 \).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Áp dụng BĐT Bunhiacopxki, ta có:
\({\left( {\sqrt {5a + 1} + \sqrt {5b + 1} + \sqrt {5c + 1} } \right)^2} \le \left( {5a + 1 + 5b + 1 + 5c + 1} \right)\left( {{1^2} + {1^2} + {1^2}} \right)\)
\( \Leftrightarrow {\left( {\sqrt {5a + 1} + \sqrt {5b + 1} + \sqrt {5c + 1} } \right)^2} \le 8\,.\,3 = 24\)
\( \Leftrightarrow \sqrt {5a + 1} + \sqrt {5b + 1} + \sqrt {5c + 1} \le \sqrt {24} = 2\sqrt 6 \)
Dấu “=” xảy ra khi \(a = b = c = \frac{1}{3}\).
Vậy \(\sqrt {5a + 1} + \sqrt {5b + 1} + \sqrt {5c + 1} \le 2\sqrt 6 \) (đpcm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho hai số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\;\left( {b > 0,\;d > 0} \right)\). Chứng tỏ rằng:
a) Nếu \[\frac{a}{b} < \frac{c}{d}\] thì ad < bc.
b) Nếu ad < bc thì \[\frac{a}{b} < \frac{c}{d}\].
Câu 7:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
về câu hỏi!